FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Three-Dimensional Hermite–Bessel–Gaussian Soliton Clusters in Strongly Nonlocal Media |
JIN Hai-Qin1,2, LIANG Jian-Chu3, CAI Ze-Bin4, LIU Fei5, YI Lin1** |
1School of Physics, Huazhong University of Science and Technology, Wuhan 430074 2School of Physics and Electronic Information, Hubei University of Education, Wuhan 430205 3Department of Electronic Science, Huizhou University, Guangdong 516001 4Scientific Research Department, Air Force Early Warning Academy, Wuhan 430019 5Department of Physics, Hubei Normal University, Huangshi 430205
|
|
Cite this article: |
JIN Hai-Qin, LIANG Jian-Chu, CAI Ze-Bin et al 2012 Chin. Phys. Lett. 29 124207 |
|
|
Abstract We analytically and numerically demonstrate the existence of Hermite–Bessel–Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity.
|
|
Received: 26 June 2012
Published: 04 March 2013
|
|
PACS: |
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
|
|
|
[1] Chen S H and Liu H P et al 2006 Phys. Lett. A 353 493 [2] Parola A, Salasnich L and Reatto L 1998 Phys. Rev. A 57 R3180 [3] Bang O, Krolikowski W, Wyller et al 2002 Phys. Rev. E 66 046619 [4] Zhong W P and Yi L 2007 Phys. Rev. A 75 061801 [5] Buccoliero D, Desyatnikov A S, Krolikowski W et al 2007 Phys. Rev. Lett. 98 053901 [6] Mitchell D J and Snyder A W 1999 J. Opt. Soc. Am. B 16 236 [7] Zhang T, Guo Q, Xuan L et al 2006 Appl. Phys. Lett. 89 071111 [8] Peccianti M, Dyadyusha A, Kaczmarek M et al 2006 Nat. Phys. 2 737 [9] Guo Q L, Li P L, L I Y et al 2010 Chin. Phys. Lett. 27 084204 [10] Rotschild C, Alfassi B, Cohen O et al 2006 Nat. Phys. 2 769 [11] Zhong W P, Yi L, Xie R H et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025402 [12] Zhong W P, Belic M R, Assanto M et al 2011 Phys. Rev. A 83 043833 [13] Feng Y P, Ren H D and Zhou J 2010 Acta Phys. Sin. 59 3992 [14] Wouters M and Carusotto I 2007 Phys. Rev. Lett. 99 140402 [15] Zhang S W and Yi L 2010 Chin. J. Phys. 48 408 [16] Zhang S W and Yi L 2009 Opt. Commun. 282 1654 [17] Xu S L, Liang J C and Li Z M 2011 Chin. Phys. B 20 114214 [18] Hu W, Yang Z J, Lu D Q et al 2011 Acta Phys. Sin. 60 024214 (in Chinese) [19] Rotschild C, Manela O et al 2005 Phys. Rev. Lett. 95 213904 [20] Liang J C, Cai Z B et al 2010 Opt. Commun. 283 386 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|