Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124208    DOI: 10.1088/0256-307X/29/12/124208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analytic Solutions for the Spectral Responses of RCA-Grating-Based Waveguide Devices
ZENG Xiang-Kai1**, WEI Lai2
1School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054
2Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong
Cite this article:   
ZENG Xiang-Kai, WEI Lai 2012 Chin. Phys. Lett. 29 124208
Download: PDF(455KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Analytic solutions (ASs) for the spectral responses of waveguide devices with raised-cosine-apodized (RCA) gratings are presented. The waveguide devices include short- and long-period RCA-gratings, RCA-grating-based interferometers as Fabry–Perot, Mach–Zehnder and Michelson interferometers. The calculations based on the analytic solutions are demonstrated and compared with those based on the transfer matrix (TM) method preferred, which has confirmed that the AS-based analysis is with enough accuracy and several thousands times the efficiency of the TM method.
Received: 20 September 2012      Published: 04 March 2013
PACS:  42.79.Dj (Gratings)  
  42.25.-p (Wave optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124208       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZENG Xiang-Kai
WEI Lai
[1] Rebola J L and Cartaxo A V T 2002 IEEE J. Lightwave Technol. 20 1537
[2] Koo K P et al 1998 IEEE Photon. Technol. Lett. 10 1006
[3] Gu X J 1998 Opt. Lett. 23 509
[4] Wang X W et al 2005 Chin. Phys. Lett. 22 1951
[5] Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277
[6] Zhou Y et al 2009 Chin. Phys. Lett. 26 014215
[7] Liu Z X and Yang C X 2004 Chin. Phys. Lett. 21 1549
[8] Weller-Brophy L A and Hall D G 1985 J. Opt. Soc. Am. A 2 863
[9] Liau J J et al 2009 Prog. Electromagn. Res. 93 385
[10] Mazzetto E et al 2005 Opt. Quantum Electron. 37 755
[11] Peral E and Capmany J 1997 IEEE J. Lightwave Technol. 15 1295
[12] Bouzid A and Abushagur M A G 1997 Appl. Opt. 36 558
[13] Poladian L 1993 Phys. Rev. E 48 4758
[14] Zeng X K 2011 IEEE Photon. Technol. Lett. 23 854
[15] Zeng X K et al 2012 Opt. Express 20 4009
[16] Zeng X K and Liang K 2011 Opt. Express 19 22797
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 124208
[2] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 124208
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 124208
[4] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 124208
[5] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 124208
[6] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 124208
[7] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 124208
[8] Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu. Structured Illumination Chip Based on Integrated Optics[J]. Chin. Phys. Lett., 2016, 33(05): 124208
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 124208
[10] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 124208
[11] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 124208
[12] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 124208
[13] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 124208
[14] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 124208
[15] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 124208
Viewed
Full text


Abstract