Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 117101    DOI: 10.1088/0256-307X/29/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tunable UV Absorption and Mobility of Yttrium-Doped ZnO using First-Principles Calculations
BAI Li-Na1,2, SUN Hai-Ming1, LIAN Jian-She1**, JIANG Qing1
1The Key Lab of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025
2The Key Laboratory of Photonic and Electric Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025
Cite this article:   
BAI Li-Na, SUN Hai-Ming, LIAN Jian-She et al  2012 Chin. Phys. Lett. 29 117101
Download: PDF(761KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic structures and optical properties of Y-doped ZnO are calculated using first-principles calculations. It is found that the replacement of Zn by the rare-earth element Y presents a shallow donor, and the Fermi level moves into the conduction band (CB). The high dispersion and s-type character of CB is expected to result in an increase in conductivity. Moreover, the absorption spectrum of the Y-doped ZnO system exhibits a slight blue shift with an increase of Y concentration, and a higher transparency in visible light is expected. Therefore, the Y-doping in ZnO would enhance the mobility and hence increase the electrical conductivity without sacrificing the optical transparency, which is essential for the improvement of ZnO's behavior and its performance in extension applications.
Received: 05 July 2012      Published: 28 November 2012
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/117101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/117101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Li-Na
SUN Hai-Ming
LIAN Jian-She
JIANG Qing
[1] ?zgür ü Alivov Y I, Liu C, Teke A, Reshchikov M A, Do?an S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[2] Xu X G, Yang H L, Wu Y, Zhang D L and Jiang Y 2012 Chin. Phys. B 21 047504
[3] Peng L P, Fang L, Wu W D, Wang X M and Li L 2012 Chin. Phys. B 21 047305
[4] Chen X C, Zhou J P, Wang H Y, Xu P S and Pan G Q 2011 Chin. Phys. B 20 096102
[5] Weng Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103
[6] Yang J H, Gao M, Yang L L, Zhang Y J, Lang J H, Wang D D, Wang Y X, Liu H L and Fan H G 2008 Appl. Surf. Sci. 255 2646
[7] Anandan S, Vinu A, Sheeja K L P, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V and Ariga K 2007 J. Mol. Catalysis A 266 149
[8] Zheng J H, Song J L, Jiang Q and Lian J S 2012 Appl. Surf. Sci. 258 6735
[9] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[10] Vanderbilt D 1990 Phys. Rev. B 41 7892
[11] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[12] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[13] Yu Q J, Fu W Y, Yu C L, Yang H B et al 2007 J. Phys. D: Appl. Phys. 40 5592
[14] Lin C C, Young S L, Kung C Y, Jhang M C, Kao M C, Chen H Z and Shih Y T 2010 J. Supercond. Nov. Magn. 23 1201
[15] Jia T K, Wang W M, Long F, Fu Z Y, Wang H and Zhang Q J 2009 Mater. Sci. Eng. B 162 179
[16] Yang J H, Wang R, Yang L L, Lang J H, Wei M B et al 2011 J. Alloys Compd. 509 3606
[17] Zheng B J, Lian J S, Zhao L and Jiang Q 2011 Appl. Surf. Sci. 257 5657
[18] Bai L N, Zheng B J, Lian J S and Jiang Q 2012 Solid State Sci. 14 698
[19] Palacios P, S ánchez K and P Wahnón 2009 Thin Solid Films 517 2448
[20] Jang M S, Ryu M K, Yoon M H, Lee S H, Kim H K, Onodrea A and Kojima S 2009 Curr. Appl. Phys. 9 651
[21] Mryasov O N and Freeman A J 2001 Phys. Rev. B 64 233111
[22] Robertson J 2008 Phys. Status Solidi B 245 1026
[23] Rosen J and Warschkow O 2009 Phys. Rev. B 80 115215
[24] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 63721
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 117101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 117101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 117101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 117101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 117101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 117101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 117101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 117101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 117101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 117101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 117101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 117101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 117101
Viewed
Full text


Abstract