CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tunable UV Absorption and Mobility of Yttrium-Doped ZnO using First-Principles Calculations |
BAI Li-Na1,2, SUN Hai-Ming1, LIAN Jian-She1**, JIANG Qing1 |
1The Key Lab of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025 2The Key Laboratory of Photonic and Electric Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025
|
|
Cite this article: |
BAI Li-Na, SUN Hai-Ming, LIAN Jian-She et al 2012 Chin. Phys. Lett. 29 117101 |
|
|
Abstract The electronic structures and optical properties of Y-doped ZnO are calculated using first-principles calculations. It is found that the replacement of Zn by the rare-earth element Y presents a shallow donor, and the Fermi level moves into the conduction band (CB). The high dispersion and s-type character of CB is expected to result in an increase in conductivity. Moreover, the absorption spectrum of the Y-doped ZnO system exhibits a slight blue shift with an increase of Y concentration, and a higher transparency in visible light is expected. Therefore, the Y-doping in ZnO would enhance the mobility and hence increase the electrical conductivity without sacrificing the optical transparency, which is essential for the improvement of ZnO's behavior and its performance in extension applications.
|
|
Received: 05 July 2012
Published: 28 November 2012
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
|
|
|
[1] ?zgür ü Alivov Y I, Liu C, Teke A, Reshchikov M A, Do?an S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301 [2] Xu X G, Yang H L, Wu Y, Zhang D L and Jiang Y 2012 Chin. Phys. B 21 047504 [3] Peng L P, Fang L, Wu W D, Wang X M and Li L 2012 Chin. Phys. B 21 047305 [4] Chen X C, Zhou J P, Wang H Y, Xu P S and Pan G Q 2011 Chin. Phys. B 20 096102 [5] Weng Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103 [6] Yang J H, Gao M, Yang L L, Zhang Y J, Lang J H, Wang D D, Wang Y X, Liu H L and Fan H G 2008 Appl. Surf. Sci. 255 2646 [7] Anandan S, Vinu A, Sheeja K L P, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V and Ariga K 2007 J. Mol. Catalysis A 266 149 [8] Zheng J H, Song J L, Jiang Q and Lian J S 2012 Appl. Surf. Sci. 258 6735 [9] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 [10] Vanderbilt D 1990 Phys. Rev. B 41 7892 [11] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [12] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [13] Yu Q J, Fu W Y, Yu C L, Yang H B et al 2007 J. Phys. D: Appl. Phys. 40 5592 [14] Lin C C, Young S L, Kung C Y, Jhang M C, Kao M C, Chen H Z and Shih Y T 2010 J. Supercond. Nov. Magn. 23 1201 [15] Jia T K, Wang W M, Long F, Fu Z Y, Wang H and Zhang Q J 2009 Mater. Sci. Eng. B 162 179 [16] Yang J H, Wang R, Yang L L, Lang J H, Wei M B et al 2011 J. Alloys Compd. 509 3606 [17] Zheng B J, Lian J S, Zhao L and Jiang Q 2011 Appl. Surf. Sci. 257 5657 [18] Bai L N, Zheng B J, Lian J S and Jiang Q 2012 Solid State Sci. 14 698 [19] Palacios P, S ánchez K and P Wahnón 2009 Thin Solid Films 517 2448 [20] Jang M S, Ryu M K, Yoon M H, Lee S H, Kim H K, Onodrea A and Kojima S 2009 Curr. Appl. Phys. 9 651 [21] Mryasov O N and Freeman A J 2001 Phys. Rev. B 64 233111 [22] Robertson J 2008 Phys. Status Solidi B 245 1026 [23] Rosen J and Warschkow O 2009 Phys. Rev. B 80 115215 [24] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 63721 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|