|
High Performance Humidity Sensor Based on Electrospun Zr0.9Mg0.1O2?δ Nanofibers
SU Mei-Ying, WANG Jing, YAO Peng-Jun, DU Hai-Ying
Chin. Phys. Lett. 2012, 29 (11):
110701
.
DOI: 10.1088/0256-307X/29/11/110701
Zr0.9Mg0.1O2?δ nanofibers and ZrO2 nanofibers are synthesized using electrospinning and the calcination technique. The nanofibers are characterized using x-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a Brunauer–Emmett–Teller (BET) surface analyzer. The humidity sensing properties of Zr0.9Mg0.1O2?δ nanofiber sensors are analyzed and compared with those of ZrO2 nanofiber sensors. The Zr0.9Mg0.1O2?δ nanofiber humidity sensors exhibit a broader humidity range of 11–97% relative humidity (RH), good linearity, small humidity hysteresis, and rapid response and recovery times. The complex impedance plots of the Zr0.9Mg0.1O2?δ sensor at different RHs are drawn, and the humidity sensing mechanism is discussed via an equivalent circuit.
|
|
Triple Z0-Boson Production in a Large Extra Dimensions Model at the International Linear Collider
JIANG Ruo-Cheng, LI Xiao-Zhou, MA Wen-Gan, GUO Lei, ZHANG Ren-You
Chin. Phys. Lett. 2012, 29 (11):
111101
.
DOI: 10.1088/0256-307X/29/11/111101
We investigate the effects induced by the interactions of the Kaluza–Klein graviton with the standard model (SM) particles on the triple Z0-boson production process at the International Linear Collider in the framework of the large extra dimension (LED) model. We present the dependence of the integrated cross sections on the electron-positron colliding energy √s, and various kinematic distributions of final Z0 bosons and their subsequential decay products in both the SM and the LED model. We also provide the relationship between the integrated cross section and the fundamental scale MS by taking the number of the extra dimensions (d) as 3, 4, 5, and 6, respectively. The numerical results show that the LED effect can induce an observable relative discrepancy for the integrated cross section (δLED). We find that the relative discrepancy of the LED effect can even reach a few dozen percent in the high transverse momentum area or the central rapidity region of the final Z0-bosons and muons.
|
|
Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions
CAO Xiang-Nian, SU Mao-Gen, SUN Dui-Xiong, FU Yan-Biao, DONG Chen-Zhong
Chin. Phys. Lett. 2012, 29 (11):
113202
.
DOI: 10.1088/0256-307X/29/11/113202
Detailed theoretical calculations are performed for the 4 f and 5 p inner-shell excitations of W-W 3+ ions using the multiconfiguration Hartree–Fock method in order to better understand the origin of the XUV photoabsorption spectra of W atoms from the dual laser-produced plasma experiment (Costello et al. J. Phys. B 24 (1991) 5063 and the spectra of photon-induced single ionization of W q+ ions ( q=1, 2, 3) (Müller et al. Phys. Scr. T1441 (2011) 014052) from photon-ions merged beam experiments, respectively. Two broad and strong resonances in the experimental spectra have also been theoretically identified mainly from 5 p–5 d resonance. The 4 f–5 d,6 d and 5 p–6 d transitions also make a small contribution to each spectrum, which are superimposed on the 5 p–5 d transition arrays. Based on the assumption of a normalized Boltzmann distribution among the excited states, we succeed in reproducing spectra which are in good agreement with experiments.
|
|
Extraordinary Transmission through Fractal-Featured Metallic and Superconducting Films at Terahertz Frequency
LIANG Lan-Ju , JIN Biao-Bing, ZHANG Qiu-Yi, WU Jing-Bo, BAO Yong-Jun, JIA Tao, JIA Xiao-Qing, CAO Chun-Hai, KANG Lin, XU Wei-Wei, CHEN Jian, WU Pei-Heng
Chin. Phys. Lett. 2012, 29 (11):
114101
.
DOI: 10.1088/0256-307X/29/11/114101
We report on fractal-featured square and ring-shaped apertures with a Sierpinski carpet pattern (SCP) on metallic and superconducting NbN films. Multiple extraordinary terahertz (THz) transmission peaks are studied in the transmission spectra using both THz time-domain spectroscopy and numerical simulation. The characteristic transmission peaks are found to be associated with the interaction of surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) for ring-shaped apertures. The effect of LSPs is less remarkable in the square apertures. For the superconducting NbN film, when the temperature is slightly lower than the critical transition temperature Tc, the peak magnitude of SPP resonances is most prominent due to the non-monotonic temperature dependence of kinetic inductance. These results provide a new way to design compact and efficient THz devices.
|
|
A Q-Switched Erbium-Doped Fiber Laser with a Carbon Nanotube Based Saturable Absorber
S. W. Harun, M. A. Ismail, F. Ahmad, M. F. Ismail, R. M. Nor, N. R. Zulkepely, H. Ahmad
Chin. Phys. Lett. 2012, 29 (11):
114202
.
DOI: 10.1088/0256-307X/29/11/114202
We demonstrate a simple, compact and low cost Q-switched erbium-doped fiber laser (EDFL) using single-wall carbon nanotubes (CNTs) as a saturable absorber for possible applications in metrology, sensing, and medical diagnostics. The EDFL operates at around 1560 nm with repetition rates of 16.1 kHz and 6.4 kHz with saturable absorbers SA1 and SA2 at a pump power of 120 mW. The absorbers are constructed by optically driven deposition and normal deposition techniques. It is observed that the optical deposition method produces a Q-switched EDFL with a lower threshold of 70 mW and better Q-switching performance compared to that of the normal deposition method. The EDFL also has pulse energy of 90.3 nJ and pulse width of 11.6 μs at 120 mW pump power.
|
|
Graphene-Oxide-Based Q-Switched Fiber Laser with Stable Five-Wavelength Operation
ZHAO Jun-Qing, WANG Yong-Gang, YAN Pei-Guang, RUAN Shuang-Chen, CHENG Jian-Qun, DU Ge-Guo, YU Yong-Qin, ZHANG Ge-Lin, WEI Hui-Feng, LUO Jie, Yuen H. Tsang
Chin. Phys. Lett. 2012, 29 (11):
114206
.
DOI: 10.1088/0256-307X/29/11/114206
We demonstrate an erbium-doped ring-cavity fiber laser Q-switched by a graphene oxide-based saturable absorber (GOSA). The GOSA was fabricated by vertically evaporating GO-polyvinylalcohol (GO/PVA) composite dispersion, and has a good performance under room temperature. Utilizing a specially fabricated fiber Bragg grating (FBG), stable five-wavelength lasing is realized and stabilized at different pump powers under any polarization state. When the pump power increases from 78.4 mW to 379.3 mW, the output power ranging from 1.9 mW to 16.6 mW could be obtained, with pulse duration from 6.8 μs to 2.72 μs, single pulse energy from 123.73 nJ to 229.74 nJ, and pulse repetition rate from 15.36 kHz to 72.25 kHz. To the best of our knowledge, it is the first simultaneous realization of five-wavelength operation and pulse output in a GO Q-switched all fiber laser system.
|
|
Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions
LIU Yuan-Tao, ZHAO Hua, LI Lei, FENG Yong-Yong
Chin. Phys. Lett. 2012, 29 (11):
115201
.
DOI: 10.1088/0256-307X/29/11/115201
The single-fluid Magnetohydrodynamic (MHD) equations for electrolytes in the presence of a magnetic field are derived from multi-fluid MHD equations with ion-neutral collisions in partially ionized conductive fluids. The dispersion relationship of MHD waves is also investigated, which is different from that for plasmas or liquid metals. Based on the equations, we find that MHD waves are dispersive in electrolytes, and the critical frequencies for excitation of Alfven waves vary with magnetic field or conductivity, so the exciting of MHD waves is severely restricted in electrolytes with relatively low conductivity except at an extremely low frequency or when it is permeated by a considerably strong ambient magnetic field. These theories are applied to seawater to estimate the magnetic field vibration caused by the large-scale motion of seawater (e.g., ocean currents or tides). It is found that high frequency waves are dampened severely in seawater, while low frequency waves can propagate over a long distance without much attenuation.
|
|
An Effective Solution for the Best Set of Beveling Parameters of the Cubic High-Pressure Tungsten Carbide Anvil
HAN Qi-Gang, ZHANG Qiang, LI Ming-Zhe, JIA Xiao-Peng, LI Yue-Fen, MA Hong-An
Chin. Phys. Lett. 2012, 29 (11):
116201
.
DOI: 10.1088/0256-307X/29/11/116201
Determining the best set of beveling parameters is an advantageous characteristic of the geometrical conditions for a cubic high-pressure tungsten carbide (WC) anvil, but it is almost impossible to deduce experimentally (much affected by defects in the material). In order to remove the affection of defects in materials, we investigate computational stress analyses in different beveling parameters of WC anvils by the finite element method. The results indicate that the rate of cell pressure transmitting and failure crack in the WC anvil monotonically increases with the bevel angle from 42° to 45°. Furthermore, there are two groups of actual users of beveled anvils, one group preferring 41.5°, which can decrease the rate of failure crack in WC anvil, the other group preferring 42°, which can increase the rate of cell pressure transmitting. This work would give an effective solution to solve the problem of the design of a cubic high-pressure WC anvil experimentally and will greatly help to improve the cubic high-pressure WC anvil type high pressure techniques.
|
|
First-Principles Study of Electronic Structure and Optical Properties of Cubic Perovskite CsCaF3
K. Ephraim Babu, A. Veeraiah, D. Tirupati Swamy, V. Veeraiah
Chin. Phys. Lett. 2012, 29 (11):
117102
.
DOI: 10.1088/0256-307X/29/11/117102
Electronic, structural and optical properties of the cubic perovskite CsCaF3 are calculated by using the full potential linearized augmented plane wave (FP-LAPW) plus local orbitals method with generalized gradient approximation (GGA) in the framework of the density functional theory. The calculated lattice constant is in good agreement with the experimental result. The electronic band structure shows that the fundamental band gap is wide and indirect at (Γ–R) point. The contribution of the different bands is analyzed from the total and partial density of states curves. The charge density plots show strong ionic bonding in Cs-F, and ionic and weak covalent bonding between Ca and F. Calculations of the optical spectra, viz., the dielectric function, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are performed for the energy range 0–30 eV.
|
|
Growth and Characterization of an a-Plane InxGa1?xN on a r-Plane Sapphire
ZHAO Gui-Juan, LI Zhi-Wei, WEI Hong-Yuan, LIU Gui-Peng, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo
Chin. Phys. Lett. 2012, 29 (11):
117103
.
DOI: 10.1088/0256-307X/29/11/117103
The non-polar a-plane (1120) InxGa1?xN alloys with different indium compositions (0.074≤x≤0.555) were grown on r-plane (1012) sapphire substrates by metalorganic chemical vapor deposition, and the indium compositions x are estimated from x-ray diffraction measurements. The in-plane orientation of the InxGa1?xN with respect to the r-plane substrate is confirmed to be [1100]sapphire|| [1120]InxGa1?xN and [1101]sapphire|| [0001]InxGa1?xN. The effects of substrate temperature, reactor pressure and trimethylindium input flow on the indium incorporation and growth rate are investigated. The morphology of the a-plane InxGa1?xN is found to be significantly improved with the decreasing indium composition x and growth rate. Moreover, the in-plane anisotropic structural characteristics are revealed by high resolution x-ray diffraction employing azimuthal dependence, and the degree of anisotropy decreases with the increase of indium composition.
|
|
A Hybrid Density Functional Theory Study of Band Gap Tuning in ZnO through Pressure
ZHAO Bo-Tao, DUAN Yi-Feng, SHI Hong-Liang, QIN Li-Xia, SHI Li-Wei, TANG Gang
Chin. Phys. Lett. 2012, 29 (11):
117104
.
DOI: 10.1088/0256-307X/29/11/117104
The structural transformation and electronic structure of ZnO under hydrostatic pressure are investigated using the HSE06 range-separated hybrid functional. We show that wurtzite ZnO under pressure undergoes a structural transition to a graphite-like phase. We also find that the band gap of wurtzite phase is always direct, whereas the new phase can display either direct or indirect band structure. Furthermore, the gap is greatly enhanced by pressure and no semi-metallic phase is observed. This is drastically different from our previous results of AlN and GaN [ Appl. Phys. Lett. 100 (2012) 022104].
|
|
Formula for the Probability of Secondary Electrons Passing over the Surface Barrier into a Vacuum
XIE Ai-Gen, XIAO Shao-Rong, ZHAN Yu, ZHAO Hao-Feng
Chin. Phys. Lett. 2012, 29 (11):
117901
.
DOI: 10.1088/0256-307X/29/11/117901
Based on a simple classical model that primary electrons at high electron energy interact with the electrons of lattice by the Coulomb force, we deduce the energy of secondary electrons. In addition, the number of secondary electrons in the direction of velocity of primary electrons per unit path length, n, is obtained. According to the energy band of the insulator, n, the definition of the probability B of secondary electrons passing over the surface barrier of insulator into the vacuum and the assumption that lattice scattering is ignored, we deduce the expression of B related to the width of the forbidden band (Eg) and the electron affinity χ. As a whole, the B values calculated with the formula agree well with the experimental data. The calculated B values lie between zero and unity and are discussed theoretically. Finally, we conclude that the deduced formula and the theory that explains the relationships among B, χ and Eg are correct.
|
|
Structural and Optical Behavior of Germanium Quantum Dots
ALIREZA Samavati, Z. Othaman, S. K. Ghoshal, M. R. Dousti, R. J. Amjad
Chin. Phys. Lett. 2012, 29 (11):
118101
.
DOI: 10.1088/0256-307X/29/11/118101
Controlled growth, synthesis, and characterization of a high density and large-scale Ge nanostructure by an easy fabrication method are key issues for optoelectronic devices. Ge quantum dots (QDs) having a density of ~1011 cm?2 and a size as small as ~8 nm are grown by radio frequency magnetron sputtering on Si (100) substrates under different heat treatments. The annealing temperature dependent structural and optical properties are measured using AFM, XRD, FESEM, EDX, photoluminescence (PL) and Raman spectroscopy. The effect of annealing is found to coarsen the Ge QDs from pyramidal to dome-shaped structures as they grow larger and transform the nanoislands into relatively stable and steady state configurations. Consequently, the annealing allows the intermixing of Si into the Ge QDs and thereby reduces the strain energy that enhances the formation of larger nanoislands. The room temperature PL spectra exhibits two strong peaks at ~2.87 eV and ~3.21 eV attributed to the interaction between Ge, GeOx and the possibility of the presence of QDs core-shell structure. No reports so far exist on the red shift ~0.05 eV of the strongest PL peak that results from the effect of quantum confinement. Furthermore, the Raman spectra for the pre-annealed QDs that consist of three peaks at around ~305.25 cm?1, 409.19 cm?1 and 515.25 cm?1 are attributed to Ge-Ge, Ge-Si, and Si-Si vibration modes, respectively. The Ge-Ge optical phonon frequency shift (~3.27 cm?1) associated with the annealed samples is assigned to the variation of shape, size distribution, and Ge composition in different QDs. The variation in the annealing dependent surface roughness and the number density is found to be in the range of ~0.83 to ~2.24 nm and ~4.41 to ~2.14 × 1011 cm?2, respectively.
|
|
Preparation and Characterization of Fe-Based Metallic Glasses with Pure and Raw Elements
Nassima Seghairi, Badis Bendjemil, Gabriel Lavorato, Alberto Castellero, Marcello Baricco
Chin. Phys. Lett. 2012, 29 (11):
118102
.
DOI: 10.1088/0256-307X/29/11/118102
Amorphous alloys with a composition (at.%) Fe48Cr15Mo14C15B6Y2 were prepared by using either pure elements (alloy B1) or a commercial AISI430 steel as a base material (B2). When prepared from pure elements, alloy (B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in an air atmosphere. In the case of alloy B2, prepared by using commercial grade raw materials, rods of 2 mm diameter are obtained. Ribbons (B1 and B2) of width 5 mm and thickness about 30 μm are prepared from the arc-melted ingots using a single roller melt spinner at a wheel speed of 40 m/s. The thermal and structural properties of the samples are measured by a combination of differential scanning calorimetry (DSC), x-ray diffraction and scanning electron microscopy. Chemical compositions are checked by energy dispersive spectroscopy analysis. X-ray diffraction and scanning electron microscopy observations confirm that an amorphous structure is obtained in all the samples. A minor fraction of crystalline phases (oxides and carbides) is detected on the as-cast surface. Values of hardness and Young modulus were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and the partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.
|
|
Structural Design of a Compact in-Plane Nano-Grating Accelerometer
YAO Bao-Yin, ZHOU Zhen, FENG Li-Shuang, WANG Wen-Pu, WANG Xiao
Chin. Phys. Lett. 2012, 29 (11):
118502
.
DOI: 10.1088/0256-307X/29/11/118502
A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers.
|
|
Ultra Low Dark Current, High Responsivity and Thin Multiplication Region in InGaAs/InP Avalanche Photodiodes
LI Bin, YANG Huai-Wei, GUI Qiang, YANG Xiao-Hong, WANG Jie, WANG Xiu-Ping, LIU Shao-Qing, HAN Qin
Chin. Phys. Lett. 2012, 29 (11):
118503
.
DOI: 10.1088/0256-307X/29/11/118503
A separate absorption, grading, charge and multiplication InGaAs/InP avalanche photodiode with ultra low dark current and high responsivity is demonstrated. It has a thin multiplication layer and a planar structure. Through the use of a well and a single floating guard ring to suppress edge breakdown, the device can easily be fabricated by one step epitaxial growth and one step diffusion. The dark current of a 30 μm diameter device is as low as 0.028 nA at punch-through and 0.1 nA at 90% of the breakdown voltage. The responsivity at 1.55 μm is 0.93 A/W at unity gain and the multiplication layer is estimated to be less than 300 nm.
|
60 articles
|