Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114704    DOI: 10.1088/0256-307X/29/11/114704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Mixed Convection Stagnation Point Flow of Casson Fluid with Convective Boundary Conditions
T. Hayat1, S. A. Shehzad1**, A. Alsaedi2, M. S. Alhothuali2
1Department of Mathematics, Quaid-i-Azam University 45320 Islamabad 44000, Pakistan
2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Cite this article:   
T. Hayat, S. A. Shehzad, A. Alsaedi et al  2012 Chin. Phys. Lett. 29 114704
Download: PDF(539KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mixed convection stagnation-point flow of an incompressible non-Newtonian fluid over a stretching sheet under convective boundary conditions is investigated. Mathematical formulation is presented for a Casson fluid. The resulting partial differential equations are converted into the ordinary differential equations by the suitable transformations. The velocity and temperature profiles are computed by employing the homotopy analysis method. The plotted graphs illustrate the flow and heat transfer characteristics and their dependence upon the embedded parameters. Numerical values of skin-friction coefficient and Nusselt number are given and examined. Comparison of the present results with the existing solution is also given.
Received: 24 July 2012      Published: 28 November 2012
PACS:  47.15.-x (Laminar flows)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114704       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Hayat
S. A. Shehzad
A. Alsaedi
M. S. Alhothuali
[1] Chiam T C 1994 J. Phys. Soc. Jpn. 63 2443
[2] Mahapatra T R and Gupta A S 2002 Heat Mass Transfer 38 517
[3] Nazar R et al 2004 Int. J. Non-Linear Mech. 39 1227
[4] Sadeghy K et al 2006 Int. J. Non-Linear Mech. 41 1242
[5] Ishak A et al 2007 Malaysian J. Math. Sci. 1 217
[6] Hayat T et al 2010 Int. J. Heat Mass Transfer 53 466
[7] Mahapatra T R et al 2007 Int. J. Non-Linear Mech. 42 484
[8] Labropulu F and Li D 2008 Int. J. Non-Linear Mech. 43 941
[9] Ishak A et al 2007 Chin. Phys. Lett. 24 2895
[10] Zheng L C et al 2003 Chin. Phys. Lett. 20 83
[11] Xiong Y B et al 2006 Chin. Phys. B 15 2352
[12] Gang W et al 2005 Chin. Phys. B 14 1392
[13] Ming Y et al 2011 Acta Phys. Sin. 60 024703 (in Chinese)
[14] Sajid M et al 2012 Chin. Phys. Lett. 29 024702
[15] Zhang J et al 2011 Chin. Phys. Lett. 28 124707
[16] Yao S and Fang T 2011 Chin. Phys. Lett. 28 114702
[17] Fang T et al 2010 Chin. Phys. Lett. 27 084703
[18] Fang T et al 2011 Chin. Phys. Lett. 28 124707
[19] Midya C 2012 Chin. Phys. Lett. 29 014701
[20] Bhattacharyya K 2011 Chin. Phys. Lett. 28 084702
[21] Bhattacharyya K 2011 Chin. Phys. Lett. 28 074701
[22] Bhattacharyya K et al 2011 Chin. Phys. Lett. 28 024701
[23] Aziz A 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1064
[24] Magyari E 2011 Commun. Nonlinear Sci. Numer. Simul. 16 599
[25] Yao S et al 2011 Commun. Nonlinear Sci. Numer. Simul. 16 752
[26] Hayat T et al 2011 Z. Naturforsch. 66a 417
[27] Eldabe N T M and Salwa M G E 1995 J. Phys. Soc. Jpn. 64 4163
[28] Boyd J et al 2007 Phys. Fluids 19 93
[29] Shahmohamadi H 2012 Meccanica 47 1313
[30] Mustafa M et al 2012 Z. Naturforsch. 67a 70
[31] Liao S J 2003 Beyond Perturbation: Introduction to Homotopy Analysis Method (Boca Raton: CRC Press)
[32] Hayat T et al 2011 Chin. Phys. Lett. 28 074702
Related articles from Frontiers Journals
[1] NIE De-Ming, LIN Jian-Zhong, and ZHANG Kai. Flow Patterns in the Sedimentation of a Capsule-Shaped Particle[J]. Chin. Phys. Lett., 2012, 29(8): 114704
[2] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 114704
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 114704
[4] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 114704
[5] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 114704
[6] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 114704
[7] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 114704
[8] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 114704
[9] YUN Mei-Juan, YU Bo-Ming, ZHANG Bin, HUANG Ming-Tao. A Geometry Model for Tortuosity of Streamtubes in Porous Media with Spherical Particles[J]. Chin. Phys. Lett., 2005, 22(6): 114704
[10] YU Bo-Ming. Fractal Character for Tortuous Streamtubes in Porous Media[J]. Chin. Phys. Lett., 2005, 22(1): 114704
[11] CAO Bing-Yang, CHEN Min, GUO Zeng-Yuan. Rarefied Gas Flow in Rough Microchannels by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2004, 21(9): 114704
[12] YU Bo-Ming, LI Jian-Hua. A Geometry Model for Tortuosity of Flow Path in Porous Media[J]. Chin. Phys. Lett., 2004, 21(8): 114704
[13] GUO Wei-Bin, SHI Bao-Chang, WANG Neng-Chao, GUO Zhao-Li. Lattice Bhatnagar-Gross-Krook Simulation of Stratified Backward-Facing Step Flow[J]. Chin. Phys. Lett., 2002, 19(12): 114704
[14] FENG Shi-De, ZHAO Ying, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Numerical Simulation of a Circular Cylinder[J]. Chin. Phys. Lett., 2002, 19(6): 114704
[15] FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 114704
Viewed
Full text


Abstract