Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 113201    DOI: 10.1088/0256-307X/29/11/113201
ATOMIC AND MOLECULAR PHYSICS |
Population Evolution of Rydberg Rubidium Atoms by Half-Cycle Pulses
JIA Guang-Rui1,2**, ZHAO Yue-Jin1, ZHANG Xian-Zhou2, LIU Yu-Fang1,2, YU Kun1
1School of Optoelectronics, Beijing Institute of Technology, Beijing 100081
2College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007
Cite this article:   
JIA Guang-Rui, ZHAO Yue-Jin, ZHANG Xian-Zhou et al  2012 Chin. Phys. Lett. 29 113201
Download: PDF(996KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the B-spline basis set method combined with model potential, the Stark energy level of rubidium atoms in the vicinity of n=30 is presented. By using a using time-dependent multilevel approach, we calculate the population redistribution of high Rydberg rubidium atoms under the interaction of external time-dependent half-cycle pulses. Our numerical results show that the population of rubidium atoms can be driven to lower or higher n levels with a train of half cycle pulses, the final population distribution of all the l states for the same n is observed after these interactions.
Received: 17 July 2012      Published: 28 November 2012
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  32.80.-t (Photoionization and excitation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/113201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/113201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Guang-Rui
ZHAO Yue-Jin
ZHANG Xian-Zhou
LIU Yu-Fang
YU Kun
[1] Jones R R et al 1993 Phys. Rev. Lett. 70 1236
[2] Song H W and Li Y 2008 Phys. Rev. A 78 062504
[3] Gurtler A and Zande W J 2004 Phys. Lett. A 324 315
[4] Gurtler A et al 2003 Appl. Phys. Lett. 83 222
[5] Jirari H and Potz W 2005 Phys. Rev. A 72 013409
[6] Maeda H, Norum D V L and Gallagher T F 2005 Science 307 1757
[7] Hu S X and Collins L A 2004 Phys. Rev. A 69 041402
[8] Wetzels A, Gurtler A, Muller H G and Noordam L D 2001 Eur. Phys. J. D 14 157
[9] Drabbels M and Noordam L D 1999 Appl. Phys. Lett. 74 1797
[10] Vrijen R B, Lankhuijzen G M and Noordam L D 1997 Phys. Rev. Lett. 79 617
[11] Schweizer W, Fa?binder P and Gonzalez-Ferez R 1999 At. Data Nucl. Data Tables 72 33
[12] Li W, Mourachko I, Noel M W and Gallagher T F 2003 Phys. Rev. A 67 052502
[13] Flannery M R and Vrinceanu D 2003 Phys. Rev. A 68 030502
Related articles from Frontiers Journals
[1] ChunMei Liu, Jörn Manz, Huihui Wang, and Yonggang Yang. Quantum Engineering of Helical Charge Migration in HCCI[J]. Chin. Phys. Lett., 2022, 39(12): 113201
[2] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 113201
[3] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 113201
[4] Junyang Yuan, Yixuan Ma, Renyuan Li, Huanyu Ma, Yizhu Zhang, Difa Ye, Zhenjie Shen, Tianmin Yan, Xincheng Wang, Matthias Weidemüller, Yuhai Jiang. Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field[J]. Chin. Phys. Lett., 2020, 37(5): 113201
[5] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 113201
[6] Peng-Ju Tang, Peng Peng, Xiang-Yu Dong, Xu-Zong Chen, Xiao-Ji Zhou. Implementation of Full Spin-State Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 113201
[7] Wen-Jing Cheng, Shi-Hua Zhao. Simulation of Intermediate State Absorption Enhancement in Rare-Earth Ions by Polarization Modulated Femtosecond Laser Field[J]. Chin. Phys. Lett., 2018, 35(11): 113201
[8] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 113201
[9] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 113201
[10] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 113201
[11] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 113201
[12] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 113201
[13] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 113201
[14] GONG Shi-Jie, ZHOU Fei, WU Hao-Yu, WAN Wei, CHEN Liang, FENG Mang. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion[J]. Chin. Phys. Lett., 2015, 32(01): 113201
[15] CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 113201
Viewed
Full text


Abstract