Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 110302    DOI: 10.1088/0256-307X/29/11/110302
GENERAL |
Analytical Solutions to the Time-Independent Gross-Pitaevskii Equation with a Harmonic Trap
SHI Yu-Ren**, WANG Guang-Hui, LIU Cong-Bo, ZHOU Zhi-Gang, YANG Hong-Juan
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
SHI Yu-Ren, WANG Guang-Hui, LIU Cong-Bo et al  2012 Chin. Phys. Lett. 29 110302
Download: PDF(621KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We try to find the analytical solutions to the time-independent Gross-Pitaevskii equation, a nonlinear Schr?dinger equation used in the simulation of Bose–Einstein condensates trapped in a harmonic potential. Both the homotopy analysis method and the Galerkin spectral method are applied. We investigate the one-dimensional case and obtain the approximate analytical solutions successfully. Comparison between the analytical solutions and the numerical solutions has been made. The results indicate that they agree very well with each other when the atomic interaction is not too strong.
Received: 22 May 2012      Published: 28 November 2012
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  02.70.Dh (Finite-element and Galerkin methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/110302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Yu-Ren
WANG Guang-Hui
LIU Cong-Bo
ZHOU Zhi-Gang
YANG Hong-Juan
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[4] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[5] Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795
[6] Weber T, Herbig J, Mark M, N?gerl H C and Grimm R 2003 Science 299 232
[7] Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811
[8] Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook C I and Aspect A 2001 Science 292 461
[9] Pereira Dos Santos F, L??onard J, Wang J M, Barrelet C J, Perales F, Rasel E, Unnikrishnan C S, Leduc M and Cohen-Tannoudji C 2001 Phys. Rev. Lett. 86 3459
[10] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J and Grimm R 2003 Science 302 2101
[11] Gross E P 1961 Nuovo Cimento 20 454
[12] Pitaevskii L P 1961 Sov. Phys. JETP 13 451
[13] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[14] Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed Boris A 2003 Phys. Rev. Lett. 90 230401
[15] Minguzzi A, Succi S, Toschi F, Tosi M P and Vignolo P 2004 Phys. Rep. 395 223
[16] Lehtovaara L, Toivanen J and Eloranta J 2007 J. Comput. Phys. 221 148
[17] Aichinger M and Krotscheck E 2005 Comput. Mater. Sci. 34 188
[18] Lehtovaara L, Kiljunen T and Eloranta J 2004 J. Comput. Phys. 194 78
[19] Dion C M and Cancès E 2003 Phys. Rev. E 67 046706
[20] Dion C M and Cancès E 2007 Comput. Phys. Commun. 177 787
[21] Bao W Z and Wang H Q 2006 J. Comput. Phys. 217 612
[22] Bao W Z, Cai Y Y and Wang H Q 2010 J. Comput. Phys. 229 7874
[23] Yan Z Y, Zhang X F and Liu W M 2011 Phys. Rev. A 84 023627
[24] Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
[25] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[26] Li Q Y, Li Z D, Li L and Fu G S 2010 Opt. Commun. 283 3361
[27] Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
[28] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[29] Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
[30] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[31] Fei J X and Zheng C L 2012 Chin. Phys. B 21 070304
[32] Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC Press)
[33] Liao S J 2012 Homotopy Analysis Method in Nonlinear Differential Equations (Beijing: Springer & Higher Education Press)
[34] Zhao Y L, Lin Z L, Liu Z and Liao S J 2012 Appl. Math. Comput. 218 8363
[35] Liao S J 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2003
[36] Liao S J 2005 Appl. Math. Comput. 169 1186
[37] Shi Y R, Xu X J, Wu Z X, Wang Y H, Yang H J, Duan W S and Lü K P 2006 Acta Phys. Sin. 55 1555 (in Chinese)
[38] Shi Y R and Yang H J 2010 Acta Phys. Sin. 59 67 (in Chinese)
[39] Wen L, Liu W M, Cai Y Y, Zhang J M and Hu J P 2012 Phys. Rev. A 85 043602
[40] Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110302
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 110302
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 110302
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 110302
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 110302
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 110302
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 110302
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 110302
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 110302
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 110302
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 110302
[12] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 110302
[13] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 110302
[14] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 110302
[15] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 110302
Viewed
Full text


Abstract