Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107202    DOI: 10.1088/0256-307X/29/10/107202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage
WANG Zhi-Gang**, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo et al  2012 Chin. Phys. Lett. 29 107202
Download: PDF(759KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel controllable hybrid-anode AlGaN/GaN field-effect rectifier (HA-FER) with low operation voltage (LOV) is proposed. Its mechanism can be explained by the field-controlled energy band model. This model reveals that the electric field in the AlGaN layer alters the energy band to result in a variation of the two-dimensional electron gas (2DEG) at AlGaN/GaN interface; the field can be changed by the thickness d of the AlGaN layer and the applied bias. As the d reduces below the critical thickness, the 2DEG vanishes and then the channel is pinched off. Therefore, the threshold voltage of HA-FER can be designed as low as 0 V leading to LOV (<1 V). The analytical characteristic of the HA-FER is calculated and validated by the simulated results. These results also demonstrate that the forward properties of HA-FER are superior to the conventional SBD due to the high Schottky barrier.
Received: 30 May 2012      Published: 01 October 2012
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  85.60.Jb (Light-emitting devices)  
  73.40.Gk (Tunneling)  
  72.20.Ht (High-field and nonlinear effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhi-Gang
CHEN Wan-Jun
ZHANG Bo
LI Zhao-Ji
[1] Cai Y, Y Zhou G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
[2] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron Devices 50 2528
[3] Guo B Z, Gong N and Yu F Q 2008 Chin. Phys. B 17 290
[4] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q, and Ma X H 2009 Chin. Phys. B 18 1601
[5] ChangY C, Zhang Y M and Zhang Y M 2006 Chin. Phys. B 15 0636
[6] Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304
[7] Lin Z, Lu W, Lee J, Liu D, Flynn J S and Brandes G R 2003 Appl. Phys. Lett. 82 4364
[8] Chen W, Wong K Y, Huang W, and Chen K J 2008 Appl. Phys. Lett. 92 253501-1
[9] Chowdhury S, Swenson B L and Mishra U K 2008 IEEE Electron Device Lett. 29 543
[10] Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Electron Devices 57 368
[11] O Hilt, A Knauer, F Brunner, E Bahat-Treidel and J Würfl 2010 Proc. ISPSD 2010 347
[12] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[13] Lee K, Shur M S, Drummond T J and Morkov H 1983 IEEE Trans. Electron Devices 30 207
[14] Motayed A, Sharma A, Jones K A, Derenge M A, Iliadis A A and Mohammad S N 2004 J. Appl. Phys. 96 3286
[15] Yan D W, Zhu Z M, Cheng J M, Gu X F and Lu H 2012 Chin. Phys. Lett. 29 087204
[16] Wang J H, Wang X H, Pang L, Chen X J, Jin Z and Liu X Y 2012 Chin. Phys. Lett. 29 087203
[17] Kong X, Wei K, Liu G G and Liu X Y 2012 Chin. Phys. Lett. 29 078502
[18] Bi Z W, Hao Y, Feng Q, Gao Z Y, Zhang J C, Mao W, Zhang K, Ma X H, Liu H X, Yang L A, Mei N and Chang Y M 2012 Chin. Phys. Lett. 29 028501
[19] Bahat-Treidel E, Lossy R, Würfl J and Tr?nkle G 2009 IEEE Electron Device Lett. 30 901903
[20] Zhou C, Chen W, Piner E L and Chen K J 2010 IEEE Electron Device Lett. 31 5
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 107202
[2] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 107202
[3] LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue. Al0.30Ga0.70N/GaN/Al0.07Ga0.93N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm[J]. Chin. Phys. Lett., 2015, 32(11): 107202
[4] LI Xiang-Dong, ZHANG Jin-Cheng, ZOU Yu, MA Xue-Zhi, LIU Chang, ZHANG Wei-Hang, WEN Hui-Juan, HAO Yue. AlGaN Channel High Electron Mobility Transistors with an AlxGa1?xN/GaN Composite Buffer Layer[J]. Chin. Phys. Lett., 2015, 32(07): 107202
[5] FANG Yu-Long, FENG Zhi-Hong, LI Cheng-Ming, SONG Xu-Bo, YIN Jia-Yun, ZHOU Xing-Ye, WANG Yuan-Gang, LV Yuan-Jie, CAI Shu-Jun. High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chin. Phys. Lett., 2015, 32(03): 107202
[6] WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong, WANG Ping, CHEN Guang, RONG Xin, WANG Xin-Qiang. Growth of a-Plane InN Film and Its THz Emission[J]. Chin. Phys. Lett., 2014, 31(07): 107202
[7] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 107202
[8] YU Xin-Xin, NI Jin-Yu, LI Zhong-Hui, KONG Cen, ZHOU Jian-Jun, DONG Xun, PAN Lei, KONG Yue-Chan, CHEN Tang-Sheng. AlGaN/GaN HEMTs on 4-Inch Silicon Substrates in the Presence of 2.7-µm -Thick Epilayers with the Maximum Off-State Breakdown Voltage of 500 V[J]. Chin. Phys. Lett., 2014, 31(03): 107202
[9] HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient[J]. Chin. Phys. Lett., 2013, 30(12): 107202
[10] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 107202
[11] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 107202
[12] WANG Jian-Hui, WANG Xin-Hua, PANG Lei, CHEN Xiao-Juan, JIN Zhi, and LIU Xin-Yu. Determination of Channel Temperature in AlGaN/GaN HEMTs by Pulsed IV Characteristics[J]. Chin. Phys. Lett., 2012, 29(8): 107202
[13] YAN Da-Wei, ZHU Zhao-Min, CHENG Jian-Min, GU Xiao-Feng, and LU Hai. Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN[J]. Chin. Phys. Lett., 2012, 29(8): 107202
[14] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 107202
[15] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 107202
Viewed
Full text


Abstract