CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage |
WANG Zhi-Gang**, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji |
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo et al 2012 Chin. Phys. Lett. 29 107202 |
|
|
Abstract A novel controllable hybrid-anode AlGaN/GaN field-effect rectifier (HA-FER) with low operation voltage (LOV) is proposed. Its mechanism can be explained by the field-controlled energy band model. This model reveals that the electric field in the AlGaN layer alters the energy band to result in a variation of the two-dimensional electron gas (2DEG) at AlGaN/GaN interface; the field can be changed by the thickness d of the AlGaN layer and the applied bias. As the d reduces below the critical thickness, the 2DEG vanishes and then the channel is pinched off. Therefore, the threshold voltage of HA-FER can be designed as low as 0 V leading to LOV (<1 V). The analytical characteristic of the HA-FER is calculated and validated by the simulated results. These results also demonstrate that the forward properties of HA-FER are superior to the conventional SBD due to the high Schottky barrier.
|
|
Received: 30 May 2012
Published: 01 October 2012
|
|
|
|
|
|
[1] Cai Y, Y Zhou G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435 [2] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron Devices 50 2528 [3] Guo B Z, Gong N and Yu F Q 2008 Chin. Phys. B 17 290 [4] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q, and Ma X H 2009 Chin. Phys. B 18 1601 [5] ChangY C, Zhang Y M and Zhang Y M 2006 Chin. Phys. B 15 0636 [6] Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304 [7] Lin Z, Lu W, Lee J, Liu D, Flynn J S and Brandes G R 2003 Appl. Phys. Lett. 82 4364 [8] Chen W, Wong K Y, Huang W, and Chen K J 2008 Appl. Phys. Lett. 92 253501-1 [9] Chowdhury S, Swenson B L and Mishra U K 2008 IEEE Electron Device Lett. 29 543 [10] Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Electron Devices 57 368 [11] O Hilt, A Knauer, F Brunner, E Bahat-Treidel and J Würfl 2010 Proc. ISPSD 2010 347 [12] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222 [13] Lee K, Shur M S, Drummond T J and Morkov H 1983 IEEE Trans. Electron Devices 30 207 [14] Motayed A, Sharma A, Jones K A, Derenge M A, Iliadis A A and Mohammad S N 2004 J. Appl. Phys. 96 3286 [15] Yan D W, Zhu Z M, Cheng J M, Gu X F and Lu H 2012 Chin. Phys. Lett. 29 087204 [16] Wang J H, Wang X H, Pang L, Chen X J, Jin Z and Liu X Y 2012 Chin. Phys. Lett. 29 087203 [17] Kong X, Wei K, Liu G G and Liu X Y 2012 Chin. Phys. Lett. 29 078502 [18] Bi Z W, Hao Y, Feng Q, Gao Z Y, Zhang J C, Mao W, Zhang K, Ma X H, Liu H X, Yang L A, Mei N and Chang Y M 2012 Chin. Phys. Lett. 29 028501 [19] Bahat-Treidel E, Lossy R, Würfl J and Tr?nkle G 2009 IEEE Electron Device Lett. 30 901903 [20] Zhou C, Chen W, Piner E L and Chen K J 2010 IEEE Electron Device Lett. 31 5 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|