Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014208    DOI: 10.1088/0256-307X/29/1/014208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime
CHEN Qing-Hu1,2**, LI Lei3, LIU Tao3, WANG Ke-Lin4
1Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004
2Department of Physics, Zhejiang University, Hangzhou 310027
3School of Science, Southwest University of Science and Technology, Mianyang 621010
4Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
CHEN Qing-Hu, LI Lei, LIU Tao et al  2012 Chin. Phys. Lett. 29 014208
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent measurement on an LC resonator magnetically coupled to a superconducting qubit [Phys. Rev. Lett. 105 (2010) 237001] shows that the system operates in the ultra-strong coupling regime and crosses the limit of validity for the rotating-wave approximation of the Jaynes–Cummings model. By using extended bosonic coherent states, we solve the Jaynes–Cummings model exactly without using the rotating-wave approximation. Our numerically exact results for the spectrum of the flux qubit coupled to the LC resonator are fully consistent with the experimental observations. The smallest Bloch–Siegert shift obtained is consistent with that observed in this experiment. In addition, the Bloch–Siegert shifts in arbitrary level transitions and for arbitrary coupling constants are predicted.
Keywords: 42.50.Pq      03.65.Ge      85.25.Cp      03.67.Lx     
Received: 13 September 2011      Published: 07 February 2012
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ge (Solutions of wave equations: bound states)  
  85.25.Cp (Josephson devices)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014208       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Qing-Hu
LI Lei
LIU Tao
WANG Ke-Lin
[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[2] Wallraff A et al 2004 Nature 431 162
Simmonds R W et al 2005 Phys. Rev. Lett. 93 077003
[3] Yu Y et al 2002 Science 296 889
Chiorescu I et al 2003 Science 299 1869
[4] Chiorescu I et al 2004 Nature 431 159
Johansson J et al 2006 Phys. Rev. Lett. 96 127006
[5] Forn Díaz P et al 2010 Phys. Rev. Lett. 105 237001
[6] Schuster D I et al 2007 Nature 445 515
[7] Deppe F et al 2008 Nature Phys. 4 686
[8] Fink J et al 2008 Nature 454 315
[9] Hofheinz M et al 2009 Nature 459 546
[10] Liu T, Wang K L and Feng M 2009 Europhys. Lett. 86 54003
[11] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[12] Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
[13] Liu T, Zhang Y Y, Chen Q H and Wang K L 2009 Phys. Rev. A 80 023810
[14] Amico L et al 2007 Nucl. Phys. B 787 283
[15] Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
[16] Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
[17] Liu Y X et al 2005 Phys. Rev. Lett. 95 087001
[18] Devoret M et al 2007 Ann. Phys. (Leipzig) 16 767
[19] Bourassa J et al 2009 Phys. Rev. A 80 032109
[20] Niemczyk T et al 2010 Nature Physics 6 772
[21] Fragner A et al 2008 Science 322 1357
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 014208
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 014208
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 014208
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 014208
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 014208
[6] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 014208
[7] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 014208
[8] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 014208
[9] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 014208
[10] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 014208
[11] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 014208
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 014208
[13] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 014208
[14] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 014208
[15] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 014208
Viewed
Full text


Abstract