Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014207    DOI: 10.1088/0256-307X/29/1/014207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well
CAO Xiao-Long1,2, WANG Yu-Ye1,2, XU De-Gang1,2**, ZHONG Kai1,2, LI Jing-Hui3, LI Zhong-Yang1,2, ZHU Neng-Nian1,2, YAO Jian-Quan1,2
1College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072
2Key Laboratory of Opto-electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072
3Department of Computer Science and Technology, Renai College, Tianjin University, Tianjin 301636
Cite this article:   
CAO Xiao-Long, WANG Yu-Ye, XU De-Gang et al  2012 Chin. Phys. Lett. 29 014207
Download: PDF(1425KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An asymmetric quantum well (AQW) is designed to emit a terahertz (THz) wave by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As under a doubly resonant condition. It is found that the second−order nonlinear susceptibility χ(2) varies with the two pump wavelengths, and it can reach the peak value of 1.61 µm/V when the wavelengths are given as λp1=9.756 µm and λp2=10.96 µm, respectively. The numerical results show that the refractive index of one pump wave in the AQW is concerned with not only its own wavelength but also the other wavelength. Phase-matching inside the AQW can be obtained through the tuning of the two pump wavelengths.
Keywords: 42.70.Nq      72.80.Ey      78.67.De     
Received: 01 January 1900      Published: 07 February 2012
PACS:  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  72.80.Ey (III-V and II-VI semiconductors)  
  78.67.De (Quantum wells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014207       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Xiao-Long
WANG Yu-Ye
XU De-Gang
ZHONG Kai
LI Jing-Hui
LI Zhong-Yang
ZHU Neng-Nian
YAO Jian-Quan
[1] Yang J S et al 2009 Appl. Phys. Lett. 95 162111
[2] Zhu H Y et al 2009 J. Appl. Phys. 105 043518
[3] Li D H et al 2011 Chin. Phys. Lett. 28 064205
[4] Kandaswamy P K et al 2009 Appl. Phys. Lett. 95 141911
[5] Qi C C and Cheng Z H 2009 Chin. Phys. Lett. 26 064201
[6] Sirtori C et al 1994 Appl. Phys. Lett. 65 445
[7] Berger V 1994 Semicond. Sci. Technol. 9 1493
[8] Dupont E et al 2006 IEEE J. Quantum Electron. 42 1157
[9] Jiang Y and Ding Y J 2007 Appl. Phys. Lett. 91 091108
[10] Jiang Y et al 2008 Appl. Phys. Lett. 93 241102
Related articles from Frontiers Journals
[1] SIB KRISHNA Ghoshal**, M. R. Sahar, M. S. Rohani . Dielectric Function of Silicon Nanoclusters: Role of Hydrogen[J]. Chin. Phys. Lett., 2011, 28(9): 014207
[2] LI Zhong-Yu**, XU Song, CHEN Zi-Hui, ZHANG Fu-Shi, KASATANI Kazuo . Third-Order Optical Nonlinearities of Squarylium Dyes with Benzothiazole Donor Groups Measured Using the Picosecond Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 014207
[3] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 014207
[4] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 014207
[5] Sur S., Ö, ztürk Z., Ö, zta&scedil, M.**, Bedir M., Ö, zdemir Y. . Effect of Water Concentration on the Characterization of Sprayed Cd0.5Zn0.5S Films[J]. Chin. Phys. Lett., 2011, 28(6): 014207
[6] CHEN Yi-Xin**, SHEN Guang-Di, ZHU Yan-Xu, GUO Wei-Ling, LI Jian-Jun . Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin Window Layers and Coupled Distributed Bragg Reflectors[J]. Chin. Phys. Lett., 2011, 28(6): 014207
[7] ZHOU Wei**, YANG Jie, XIA Su-Jing, LI Xiang, TANG Wu . Influence of Rapid Thermal Annealing on Carrier Dynamics in GaInNAs/GaAs Multiple Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(11): 014207
[8] ZHANG Guang-Chen, FENG Shi-Wei**, HU Pei-Feng, ZHAO Yan, GUO Chun-Sheng, XU Yang, CHEN Tang-Sheng, JIANG Yi-Jian . Channel Temperature Measurement of AlGaN/GaN HEMTs by Forward Schottky Characteristics2010-[J]. Chin. Phys. Lett., 2011, 28(1): 014207
[9] ZHAO Hong-Wei**, HU Wei-Xuan, XUE Chun-Lai, CHENG Bu-Wen, WANG Qi-Ming . Design of Waveguide Integrated Ge-Quantum-Well Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2011, 28(1): 014207
[10] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 014207
[11] GUO Yang, LIU Yao-Ping, LI Jun-Qiang, ZHANG Sheng-Li, MEI Zeng-Xia, DU Xiao-Long. Van der Pauw Hall Measurement on Intended Doped ZnO Films for p-Type Conductivity[J]. Chin. Phys. Lett., 2010, 27(6): 014207
[12] PARK Seoung-Hwan, LEE Yong-Tak . Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment[J]. Chin. Phys. Lett., 2010, 27(4): 014207
[13] LI Yao-Yao, LI Ai-Zhen, WEI Lin, LI Hua, XU Gang-Yi, ZHANG Yong-Gang. High-Temperature Operation of 8.5μm Distributed Feedback Quantum Cascade Lasers[J]. Chin. Phys. Lett., 2009, 26(8): 014207
[14] LU Hui-Min, CHEN Gen-Xiang, JIAN Shui-Sheng. Design of Phosphor-Free Single-Chip White Light-Emitting Diodes Using InAlGaN Irregular Multiple Quantum Well Structures[J]. Chin. Phys. Lett., 2009, 26(8): 014207
[15] SUN Jie, ZHU Gui-Hua, SUN Xiao-Qiang, LI Tong, GAO Wei-Nan, ZHANG Da-Ming, HOU A-Lin. High Cost Performance Organic-Inorganic Hybrid Material for Electro-optic Devices[J]. Chin. Phys. Lett., 2009, 26(2): 014207
Viewed
Full text


Abstract