GENERAL |
|
|
|
|
LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term |
R. K. Tiwari**, D. Tiwari, Pratibha Shukla |
Department of Mathematics, Govt. Model Science College Rewa, M. P. 486001, India |
|
Cite this article: |
R. K. Tiwari, D. Tiwari, Pratibha Shukla 2012 Chin. Phys. Lett. 29 010403 |
|
|
Abstract We consider a locally rotationally symmetric (LRS) Bianchi type-II spacetime with a perfect fluid and a variable cosmological constant Λ. To solve the Einstein field equations we consider the cosmological term Λ to be proportional to R−m with R being the scale factor and m a constant [Phys. Rev. D 58 (1998) 043506]. In this model we obtain Λ∼H2, Λ∼R"/R and Lambda ∼t−2, in agreement with the main dynamical laws for the decay of Λ. The physical significance of the cosmological model is also discussed.
|
Keywords:
04.20.Jb
04.20-q
98.80.Cq
|
|
Received: 14 July 2011
Published: 07 February 2012
|
|
PACS: |
04.20.Jb
|
(Exact solutions)
|
|
04.20-q
|
|
|
98.80.Cq
|
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
|
|
|
|
|
[1] Bertolami O Fortschritte der 1986 Physik 34 829 [2] Ozer M and Taha O 1986 Phys. Lett. B 171 363 [3] Freese K et al 1987 Physica B 287 797 [4] Chen W and Wu Y S 1990 Phys. Rev. D 41 695 [5] Carvalho J C and Lima J A S 1992 Phys. Rev. D 46 2404 [6] Arbab A I 1994 Gen. Rel. Gravit. 29 61 [7] Beesham A 1994 Gen. Rel. Gravit. 26 159 [8] Vishwakarma R G 2000 Class. Quantum Gravit. 17 3833 [9] Borges H A and Carneiro S 2005 Gen. Rel. Gravit. 37 1985 [10] Gasperini M 1988 Class. Quantum Gravit. 5 521 [11] Gasperini M 1987 Phys. Lett. B 194 347 [12] Berman M S 1990 Int. J. Theor. Phys. 29 567 [13] Ozer M and Taha M O 1987 Physica B 284 776 [14] Peebles P J E and Ratra B 1988 Astron. Astrophys. 325 217 [15] Abdussattar and Vishwakarma R G 1996 Physica 47 41 [16] Garid J and LeDenmat G 1999 Class Quantum Gravit. 16 149 [17] Pradhan A and Kumar A 2001 Int. J. Mod. Phys. D 10 291 [18] Abdel Rahman A 1990 Gen. Rel. Gravit. 22 655 [19] Waga I 1993 Astrophys. J. 414 436 [20] Silveira V and Waga I 1994 Phys. Rev. D 50 4890 [21] Rawaf A S T 1996 Gen. Rel. Gravit. 28 935 [22] Overduin J M and Cooperstock F I 1998 Phys. Rev. D 58 043506 [23] Asseo E and Sol H 1987 Phys. Rep. 148 307 [24] Lorenz D 1980 Phys. Lett. A 79 19 [25] Boutros H J 1986 J. Math. Phys. 27 1592 [26] Boutros H J 1989 Commun. Theor. Phys. 28 487 [27] Chakraborty S 1991 Astorophys. Space Sci. 180 293 [28] Shanthi K and Rao V V M 1991 Astrophys. Space Sci. 179 147 [29] Venkateswarlu A and Reddy D R K 1991 Astrophys. Space Sci. 182 97 [30] Coley A A and Wainwright J 1991 Class Quantum Gravit. 9 651 [31] Singh CP and Kumar S 2006 Int. J. Mod. Phys. D 15 419 [32] Singh C P and Kumar S 2007 Pramana J. Phys. 68 5 707 [33] Pradhan A, Shrivastava D and Khadekar G S 2008 Romanian Rep. Phys. 60 312 [34] Tiwari R K and Jha N K 2009 Chin. Phys. Lett. 26 109804 [35] Tiwari R K and Dwivedi U K 2010 Fizika B 19 1 [36] Tiwari R K, Rahman F and Ray S 2010 Int. J. Theor. Phys. 49 10 [37] Tiwari R K 2008 Astorophys. Space Sci. 318 243 [38] Tiwari R K 2009 Astorophys. Space Sci. 321 447 [39] Tiwari R K 2010 Res. Astrophys. Astron. 10 4 [40] Kantowski R and Sachs R K 1966 J. Math. Phys. 7 443 [41] Collins C B, Glass E N and Wikison D A 1990 Gen. Rel. Gravit. 12 18 805 [42] Singh J P, Narain S 1985 Astrophys. Space Sci. R. London 111 389 [43] Pradhan A and Singh S K 2004 Mod. Phys. D 13 803 [44] Pradhan A, Srivastav S K and Yadav M K 2005 Astrophys. Space Sci. 298 503 [45] Salim L M and Waga I 1993 Class Quantum Gravit. 10 1767 [46] Berman M S and Som M M 1990 Int. J. Theor. Phys. 29 1411 [47] Knop R A et al 2003 Astrophys. J. 598 102 [48] Riess A G et al 2004 Astrophys. J. 607 665 [49] Riess A G et al 1998 Astrophys. J. 116 1009 [50] Spergel D N et al 2007 Astrophys. J. 170 377 [51] Perlmutter S et al 1998 Nature 391 51 [52] Kalligas D, Wesson P and Everitt C W F 1992 Gen. Rel. Gravit. 24 351 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|