Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 010501    DOI: 10.1088/0256-307X/29/1/010501
GENERAL |
Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise
HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou
Department of Mechanics, Zhejiang University, Hangzhou 310027
Cite this article:   
HUANG Jia-Min, TAO Wei-Ming, XU Bo-Hou 2012 Chin. Phys. Lett. 29 010501
Download: PDF(473KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We evaluate the performance of a typical asymmetric bistable system for detecting aperiodic signal under Lévy stable noise. A Grünwald–Letnikov implicit finite difference method is employed to solve the fractional Fokker–Planck equation numerically. The noise-induced stochastic resonance (SR) and the parameter-induced SR both exist in the asymmetric bistable systems. The increase of the skewness parameter γ may deteriorate the system performance. However, by tuning the system parameters, the effects of asymmetry on the system performance can be reduced.
Keywords: 05.40.-a      05.45.-a      05.40.Fb     
Received: 01 January 1900      Published: 07 February 2012
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.Fb (Random walks and Levy flights)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/010501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Jia-Min
TAO Wei-Ming
XU Bo-Hou
[1]  Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10 
[2]  Mcnamara B, Wiesenfeld K and Roy R 1988 Phys. Rev. Lett. 60 2626 
[3]  Fauve S and Heslot F 1983 Phys. Lett. A 97 5 
[4]  Douglass J K, Wilkens L, Pantazelou E and Moss F 1993 Nature 365 337 
[5]  Zeng C H and Xie C W 2008 Chin. Phys. Lett. 25 1587 
[6]  Jung P and Hänggi P 1991 Phys. Rev. A 44 8032 
[7]  Hu G et al 1992 Chin. Phys. Lett. 9 69 
[8]  Guo F, Zhou Y R and Zhang Y 2010 Chin. Phys. Lett. 27 090506 
[9]  Xu B H et al 2002 Chaos, Solitons Fractals 13 633 
[10]  Li J L, Zeng L Z and Zhang H Q 2010 Chin. Phys. Lett. 27 100502 
[11]  Zeng L Z and Li J L 2011 Fluct. Noise Lett. 10 223 
[12]  Xu W et al 2005 Chin. Phys. 14 1077 
[13]  Li J H 2002 Phys. Rev. E 66 031104 
[14]  Inchiosa M E, Bulsara A R and Gammaitoni L 1997 Phys. Rev. E 55 4049 
[15]  Szajnowski W and Wynne J 2001 IEEE Signal Process. Lett. 8 151 
[16]  Fogedby H C 1994 Phys. Rev. Lett. 73 2517 
[17]  Podlubny I and Thimann K V 1998 Fractional Differential Equations (Amsterdam: Elsevier) chap 2 p 43 
[18]  Zeng L Z, Bao R H and Xu B H 2007 J. Phys. A 40 7175 
[19]  Li J L and Pan X 2007 Mechanical Systems and Signal Processing 21 1223 
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[11] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[12] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[13] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[14] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[15] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010501
Viewed
Full text


Abstract