Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060305    DOI: 10.1088/0256-307X/28/6/060305
GENERAL |
Non-Markovian Effect on the Classical and Quantum Correlations
XU Guo-Fu**, TONG Dian-Min
Department of Physics, Shandong University, Jinan 250100
Cite this article:   
XU Guo-Fu, TONG Dian-Min 2011 Chin. Phys. Lett. 28 060305
Download: PDF(627KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We evaluate the dynamics of quantum and classical correlations in the presence of non-Markovian noises. By considering an entangled pair of spins in the noise environment described by Ornstein–Uhlenbeck processes, we show that the quantum discord of some states is completely unaffected by independent Ornstein–Uhlenbeck noises for long intervals of time, and that the inevitable onset of the sudden decrease of the quantum discord can be substantially delayed by the decrease of the noise bandwidth γ, where γ−1=τc defines the environment's finite correlation time of the noise.
Keywords: 03.65.Ta      03.65.Yz      03.67.Mn      05.70.Fh     
Received: 10 March 2011      Published: 29 May 2011
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  05.70.Fh (Phase transitions: general studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060305       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Guo-Fu
TONG Dian-Min
[1] Nielsen M and Chuang I 2000 Quantum information and Computation (Cambridge: Cambridge University)
[2] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[3] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[4] Yang Q et al 2009 Chin. Phys. Lett. 26 040302
[5] Jiang F J et al 2011 Chin. Phys. Lett. 28 020308
[6] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[7] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[8] Oppenheim J et al 2002 Phys. Rev. Lett. 89 180402
[9] Groisman B et al 2005 Phys. Rev. A 72 032317
[10] Luo S L 2008 Phys. Rev. A 77 022301
[11] Modi K et al 2010 Phys. Rev. Lett. 104 080501
[12] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[13] Dillenschneider R 2008 Phys. Rev. B 78 224413
[14] Datta A et al 2008 Phys. Rev. Lett. 100 050502
[15] Lanyon B P et al 2008 Phys. Rev. Lett. 101 200501
[16] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[17] Cui J and Fan H 2010 J. Phys. A 43 045305
[18] Piani M et al 2008 Phys. Rev. Lett. 100 090502
[19] Piani M et al 2009 Phys. Rev. Lett. 102 250503
[20] Werlang T et al 2009 Phys. Rev. A 80 024103
[21] Maziero J et al 2009 Phys. Rev. A 80 044102
[22] Wang B et al 2010 Phys. Rev. A 81 014101
[23] Ali M et al 2010 Phys. Rev. A 81 042105
[24] Fanchini F F et al 2010 Phys. Rev. A 81 052107
[25] Mazzola L et al 2010 Phys. Rev. Lett. 104 200401
[26] Mazzola L, Piilo J and Maniscalco S arXiv:quant-ph/1006.1805
[27] Zurek W H 2003 Phys. Rev. A 67 012320
[28] Yu T and Eberly J H 2010 Opt. Commun. 283 676
[29] Hamieh S, Kobes R et al 2004 Phys. Rev. A 70 052325
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 060305
[2] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 060305
[3] GE Hong-Xia,YU Jian,LO Siu-Ming**. A Control Method for Congested Traffic in the Car-Following Model[J]. Chin. Phys. Lett., 2012, 29(5): 060305
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 060305
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 060305
[6] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060305
[7] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 060305
[8] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 060305
[9] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 060305
[10] Zarita Zainuddin, Lim Eng Aik**. Intelligent Exit-Selection Behaviors during a Room Evacuation[J]. Chin. Phys. Lett., 2012, 29(1): 060305
[11] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 060305
[12] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 060305
[13] GE Hong-Xia, WU Shu-Zhen, CHENG Rong-Jun, LO Siu-ming** . Theoretical Analysis of a Modified Continuum Model[J]. Chin. Phys. Lett., 2011, 28(9): 060305
[14] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 060305
[15] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 060305
Viewed
Full text


Abstract