GENERAL |
|
|
|
|
Non-Markovian Effect on the Classical and Quantum Correlations |
XU Guo-Fu**, TONG Dian-Min
|
Department of Physics, Shandong University, Jinan 250100
|
|
Cite this article: |
XU Guo-Fu, TONG Dian-Min 2011 Chin. Phys. Lett. 28 060305 |
|
|
Abstract We evaluate the dynamics of quantum and classical correlations in the presence of non-Markovian noises. By considering an entangled pair of spins in the noise environment described by Ornstein–Uhlenbeck processes, we show that the quantum discord of some states is completely unaffected by independent Ornstein–Uhlenbeck noises for long intervals of time, and that the inevitable onset of the sudden decrease of the quantum discord can be substantially delayed by the decrease of the noise bandwidth γ, where γ−1=τc defines the environment's finite correlation time of the noise.
|
Keywords:
03.65.Ta
03.65.Yz
03.67.Mn
05.70.Fh
|
|
Received: 10 March 2011
Published: 29 May 2011
|
|
PACS: |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
|
|
|
[1] Nielsen M and Chuang I 2000 Quantum information and Computation (Cambridge: Cambridge University)
[2] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[3] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[4] Yang Q et al 2009 Chin. Phys. Lett. 26 040302
[5] Jiang F J et al 2011 Chin. Phys. Lett. 28 020308
[6] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[7] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[8] Oppenheim J et al 2002 Phys. Rev. Lett. 89 180402
[9] Groisman B et al 2005 Phys. Rev. A 72 032317
[10] Luo S L 2008 Phys. Rev. A 77 022301
[11] Modi K et al 2010 Phys. Rev. Lett. 104 080501
[12] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[13] Dillenschneider R 2008 Phys. Rev. B 78 224413
[14] Datta A et al 2008 Phys. Rev. Lett. 100 050502
[15] Lanyon B P et al 2008 Phys. Rev. Lett. 101 200501
[16] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[17] Cui J and Fan H 2010 J. Phys. A 43 045305
[18] Piani M et al 2008 Phys. Rev. Lett. 100 090502
[19] Piani M et al 2009 Phys. Rev. Lett. 102 250503
[20] Werlang T et al 2009 Phys. Rev. A 80 024103
[21] Maziero J et al 2009 Phys. Rev. A 80 044102
[22] Wang B et al 2010 Phys. Rev. A 81 014101
[23] Ali M et al 2010 Phys. Rev. A 81 042105
[24] Fanchini F F et al 2010 Phys. Rev. A 81 052107
[25] Mazzola L et al 2010 Phys. Rev. Lett. 104 200401
[26] Mazzola L, Piilo J and Maniscalco S arXiv:quant-ph/1006.1805
[27] Zurek W H 2003 Phys. Rev. A 67 012320
[28] Yu T and Eberly J H 2010 Opt. Commun. 283 676
[29] Hamieh S, Kobes R et al 2004 Phys. Rev. A 70 052325
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|