Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060306    DOI: 10.1088/0256-307X/28/6/060306
GENERAL |
Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field
FAN Jing-Han1,2, GU Qiang2**, GUO Wei1
1School of Physics, Peking University, Beijing 100871
2Department of Physics, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
FAN Jing-Han, GU Qiang, GUO Wei 2011 Chin. Phys. Lett. 28 060306
Download: PDF(456KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate thermodynamic properties of the rotating Bose gas in a trap, taking the charged ideal Bose gas in a magnetic field as an example. The system is equivalent to a neutral gas in a synthetic magnetic field. It is indicated that the Bose–Einstein condensation temperature is irrelevant to the magnetic field, conflicting with established intuition that the critical temperature decreases with the field increasing. The specific heat and Landau diamagnetization also exhibit intriguing behaviors.
Keywords: 03.75.Hh      05.30.Jp      75.20.-g     
Received: 12 November 2010      Published: 29 May 2011
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  05.30.Jp (Boson systems)  
  75.20.-g (Diamagnetism, paramagnetism, and superparamagnetism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060306       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Jing-Han
GU Qiang
GUO Wei
[1] Schafroth M R 1955 Phys. Rev. 100 463
[2] Blatt J M and Butler S T 1955 Phys. Rev. 100 476
[3] May R M 1965 J. Math. Phys. 6 1462
Arias T A and Joannopoulos J D 1989 Phys. Rev. B 39 4071
Rojas H P 1996 Phys. Lett. B 379 148
Koh Shun-ichiro 2003 Phys. Rev. B 68 144502
[4] Daicic J, Frankel N E and Kowalenko V 1993 Phys. Rev. Lett. 71 1779
Daicic J, Frankel N E, Gailis R M and Kowalenko V 1994 Phys. Rep. 237 63
Daicic J, Frankel N E 1996 Phys. Rev. D 53 5745
[5] Toms D J 1994 Phys. Rev. B 50 3120
Standen G B and Toms D J 1999 Phys. Rev. E 60 5275
Kirsten K and Toms D J 1997 Phys. Rev. D 55 7797
[6] Alexandrov A S 1993 Phys. Rev. B 48 10571
Kabanov V V and Alexandrov A S 2005 Phys. Rev. B 71 132511
Alexandrov A S 2006 Phys. Rev. Lett. 96 147003
[7] Higbie J and Stamper-Kurn D M 2002 Phys. Rev. Lett. 88 090401
[8] Jaksch D and Zoller P 2003 New J. Phys. 5 56
Sorensen A S, Demler E and Lukin M D 2005 Phys. Rev. Lett. 94 086803
[9] Juzeliunas G and Ohberg P 2004 Phys. Rev. Lett. 93 033602
Juzeliunas G, Ruseckas J, Ohberg P and Fleischhauer M 2006 Phys. Rev. A 73 025602
[10] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[11] Lin Y J, Compton R L, Jimenez-Garcia K, Porto J V and Spielman I B 2009 Nature 462 628
[12] Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C and Rolston S L 1999 Phys. Rev. Lett. 83 4776
[13] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[14] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[15] Haljan P C, Coddington I, Engels P and Cornell E A 2001 Phys. Rev. Lett. 87 210403
[16] Hodby E, Hechenblaikner G, Hopkins S A, Marago O M and Foot C J 2001 Phys. Rev. Lett. 88 010405
[17] Bretin V, Stock S, Seurin Y and Dalibard J 2004 Phys. Rev. Lett. 92 050403
[18] Schweikhard V, Coddington I, Engels P, Mogendorff V P and Cornell E A 2004 Phys. Rev. Lett. 92 040404
[19] Kling S and Pelster A 2007 Phys. Rev. A 76 023609
[20] Pethick C J and Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University) Chap 2
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 060306
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 060306
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 060306
[4] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 060306
[5] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 060306
[6] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 060306
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 060306
[8] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 060306
[9] HAO Ya-Jiang . Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap[J]. Chin. Phys. Lett., 2011, 28(1): 060306
[10] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 060306
[11] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 060306
[12] MA Zhong-Qi, C. N. Yang,. Spin 1/2 Fermions in 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction[J]. Chin. Phys. Lett., 2010, 27(8): 060306
[13] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 060306
[14] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 060306
[15] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 060306
Viewed
Full text


Abstract