Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 038501    DOI: 10.1088/0256-307X/28/3/038501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Room-Temperature Pre-calibration Procedure for Gradiometer Sifting
ZHANG Shu-Lin1,2, LIU Yang-Bo1,2, LIU Ming3, WANG Yong-Liang1, KONG Xiang-Yan1, XIE Xiao-Ming1**
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Graduate University of the Chinese Academy of Sciences, Beijing 100190
3Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHANG Shu-Lin, LIU Yang-Bo, LIU Ming et al  2011 Chin. Phys. Lett. 28 038501
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to detect extremely weak magnetic signals, superconducting quantum interference device (SQUID) gradiometers are widely used to suppress environmental noise. A hardware SQUID gradiometer consists of a niobium gradio-antenna and an SQUID, which are coupled via an input coil. Here gradiometer imbalance may greatly reduce its noise suppression performance. The gradiometer balance depends on the geometrical forms of the antenna wound by niobium wire. We describe a simple method based on Faraday's law for the pre-calibration of the gradiometer balance at room temperature, before the gradiometer is set up. The pre-calibrating results are compared with the measured balance of an SQUID gradiometer system. This method may be used for sifting hardware gradiometers for multi-channel systems.
Keywords: 85.25.Dq      06.20.fb     
Received: 19 November 2010      Published: 28 February 2011
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  06.20.fb (Standards and calibration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/038501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/038501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shu-Lin
LIU Yang-Bo
LIU Ming
WANG Yong-Liang
KONG Xiang-Yan
XIE Xiao-Ming
[1] Romani G L et al 1982 Rev. Sci. Instrum. 53 1815
[2] Pizzella V et al 2001 Supercond. Sci. Technol. 14 R79
[3] Vrba J 1996 NATO ASI Series E: Appl. Sci. 329 127
[4] Becker W et al 1993 Physiol. Meas. 14 A45
[5] Clarke J and Braginski A I 2004 The SQUID Handbook (Weinheim: Wiley-VCH) pp 319–330
[6] He D F et al 1999 IEEE Trans. Appl. Supercond. 9 3684
[7] Lee S G et al 2007 IEEE Trans. Appl. Supercond. 17 3769
[8] Nordahn M A, Holst T and Shen Y Q 1999 Supercond. Sci. Technol. 12 946
[9] Dössel O et al 1991 IEEE Trans. Magn. 27 2797
Related articles from Frontiers Journals
[1] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 038501
[2] WANG Qiang**, LIN Bai-Ke, ZHAO Yang, LI Ye, WANG Shao-Kai, WANG Min-Ming, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun . Magneto-Optical Trapping of 88Sr atoms with 689nm Laser[J]. Chin. Phys. Lett., 2011, 28(3): 038501
[3] ZHANG Feng-Yang, PEI Pei, LI Chong**, SONG He-Shan** . Manipulating Quantum State in Superconducting Dressed-State Systems[J]. Chin. Phys. Lett., 2011, 28(12): 038501
[4] Saburo Tanaka, Tomohiro Akai, Makoto Takemoto, Yoshimi Hatsukade, Takeyoshi Ohtani, Yoshio Ikeda, Shuichi Suzuki. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer[J]. Chin. Phys. Lett., 2010, 27(8): 038501
[5] DONG Hui, , ZHANG Yi, KRAUSE Hans-Joachim, XIE Xiao-Ming. Effect of HTS Superconductors on Homogeneity of Measurement Field in Low Field Nuclear Magnetic Resonance Detection[J]. Chin. Phys. Lett., 2010, 27(8): 038501
[6] LI Ye, LIN Yi-Ge, ZHAO Yang, WANG Qiang, WANG Shao-Kai, YANG Tao, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. Stable Narrow Linewidth 689nm Diode Laser for the Second Stage Cooling and Trapping of Strontium Atoms[J]. Chin. Phys. Lett., 2010, 27(7): 038501
[7] LIU Dang-Ting, TIAN Ye, REN Yu-Feng, YU Hong-Wei, ZHANG Li-Hua, YANGQian-Sheng, CHEN Geng-Hua. A Novel Filter Scheme of Data Processing for SQUID-Based Magnetocardiogram[J]. Chin. Phys. Lett., 2008, 25(7): 038501
[8] ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao,. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(4): 038501
[9] MA Chi, ZHANG Shi-Jun, HE Juan, YE Liu. Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2008, 25(2): 038501
[10] LI Bin-Bin, SHEN Hong-Lie, ZHANG Rong, XIU Xiang-Qiang, XIE Zhi. Structural and Magnetic Properties of Codoped ZnO based Diluted Magnetic Semiconductors[J]. Chin. Phys. Lett., 2007, 24(12): 038501
[11] LI Zhuo, ZHU Xue-Min, ZHANG Li-Hua, HUANG Xu-Guang, REN Yu-Feng, CHEN Geng-Hua, YANG Qian-Sheng, FENG Ji. An Economical Magnetocardiogram System Based on High-Tc SQUIDs[J]. Chin. Phys. Lett., 2006, 23(8): 038501
[12] ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED[J]. Chin. Phys. Lett., 2006, 23(12): 038501
[13] QIN Zhi-Jie, HU Dong-Sheng, XIONG Shi-Jie. Effects of Induced Flux on Andreev Levels in a Quantum Point Contact Embedded in Superconducting Ring[J]. Chin. Phys. Lett., 2004, 21(5): 038501
[14] PAN Hai-Zhong, KUANG Le-Man. Thermal Entanglement in Superconducting Quantum-Interference-Device Qubits Coupled to Cavity Field[J]. Chin. Phys. Lett., 2004, 21(3): 038501
[15] JIA Ya, SUN Wen-Rong, LI Jia-Rong. A Stochastic Theory of dc Superconducting Quantum Interference Device Responsitivity in the Presence of Thermal Fluctuations [J]. Chin. Phys. Lett., 2002, 19(6): 038501
Viewed
Full text


Abstract