Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 030502    DOI: 10.1088/0256-307X/28/3/030502
GENERAL |
Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator
LI Qun-Hong1**, CHEN Yu-Ming1, QIN Zhi-Ying2
1College of Mathematics and Information Science, Guangxi University, Nanning 530004
2School of Mechanical and Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050054
Cite this article:   
LI Qun-Hong, CHEN Yu-Ming, QIN Zhi-Ying 2011 Chin. Phys. Lett. 28 030502
Download: PDF(492KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The stick-slip behavior in friction oscillators is very complicated due to the non-smoothness of the dry friction, which is the basic form of motion of dynamical systems with friction. In this paper, the stick-slip periodic solution in a single-degree-of-freedom oscillator with dry friction is investigated in detail. Under the assumption of kinetic friction being the Coulomb friction, the existence of the stick-slip periodic solution is considered to give out an analytic criterion in a class of friction systems. A two-parameter unfolding diagram is also described. Moreover, the time and states of motion on the boundary of the stick and slip motions are semi-analytically obtained in a single stick-slip period.
Keywords: 05.45.-a      02.03.Oz      05.45.Pq     
Received: 05 December 2010      Published: 28 February 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.03.Oz  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/030502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/030502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Qun-Hong
CHEN Yu-Ming
QIN Zhi-Ying
[1] Qin Z Y and Lu Q S 2007 Chin. Phys. Lett. 24 886
[2] Ji Y and Bi Q S 2010 Chin. Phys. Lett. 27 060503
[3] Den Hartog J P 1931 Trans. Am. Soc. Mech. Eng. 53 107
[4] Hong H K and Liu C S 2000 J. Sound Vib. 229 1171
[5] Hong H K and Liu C S 2001 J. Sound Vib. 244 883
[6] Feeny B, Guran A, Hinrichs N and Popp K 1998 Amer. Soc. Mech. Eng. 51 321
[7] Galvanetto U 2001 J. Sound Vib. 248 653
[8] di Bernardo M, Kowalczyk P and Nordmark A 2002 Physica D 170 175
[9] Kowalczyk P and di Bernardo M 2005 Physica D 204 204
[10] Yang S P and Guo S Q 2009 J. Vib. Shock 28 43 (in Chinese)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030502
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030502
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030502
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030502
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030502
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030502
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030502
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030502
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 030502
Viewed
Full text


Abstract