GENERAL |
|
|
|
|
Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry |
YANG Yang1, WANG Cang-Long1,2, DUAN Wen-Shan1**, CHEN Jian-Min3
|
1College of Physics and Electronic Engineering,Northwest Normal University, Lanzhou 730070
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
|
|
Cite this article: |
YANG Yang, WANG Cang-Long, DUAN Wen-Shan et al 2011 Chin. Phys. Lett. 28 030503 |
|
|
Abstract The mode-locking phenomena in the dc- and ac-driven overdamped two-dimensional Frenkel–Kontorova model with triangular symmetric structures are studied. The obtained results show that the transverse velocity <vx> increases in a series of quantized steps nμx (n=0, 1, 2, 3 ⋅⋅⋅). Moreover, the positive or negative rectification of longitudinal velocity <vy> can occur when n is an odd number. It is also found in our simulations that the critical depinning force oscillates with the amplitude of ac-driven force, i.e., the system is dominated by the ac-driven force. The oscillatory behavior is strongly determined by the initial phase of ac force.
|
Keywords:
05.45.Ac
05.40.-a
05.45.Pq
|
|
Received: 16 August 2010
Published: 28 February 2011
|
|
PACS: |
05.45.Ac
|
(Low-dimensional chaos)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
|
|
|
[1] Shapiro S, Janus A R and Holly S 1963 Phys. Rev. Lett. 11 80
[2] Grimes C C and Shapiro S 1968 Phys. Rev. 169 397
[3] Grüner G 1988 Mod. Phys. 60 1129
[4] Thome R E, Hubacek J S, Lyons W G, Lyding J W and Tucker J R 1988 Phys. Rev. B 37 10055
[5] McCarten J, DiCarlo D A, Maher M P, Adelman T L and Thorne R E 1992 Phys. Rev. B 46 4456
[6] Coppersmith S N and Littlewood P B 1986 Phys. Rev. Lett. 57 1927
Fisher D S 1985 Phys. Rev. B 31 1396
[7] Sellier H, Baraduc C, Lefloch F and Calemczuk R 2004 Phys. Rev. Lett. 92 257005
[8] Kitamura M, Irie A and Oya G I 2007 Phys. Rev. B 76 064518
[9] Lim J S, Choi M Y, Choi J and Kim B J 2004 Phys. Rev. B 69 220504(R)
[10] Hu B and Yang L 2005 Chaos 15 015119
[11] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[12] Reichhardt C and Nori F 1999 Phys. Rev. Lett. 82 414
Reichhardt C, Olson C J and Hastings M B 2004 Phys. Rev. E 69 056115
[13] Lin J Y, Gurvitch M, Tolpygo S K, Brourdillon A, Hou S Y and Phillips J M 1996 Phys. Rev. B 54 R12717
[14] Giamarchi T and Doussal P L 1996 Phys. Rev. Lett. 76 3408 Doussal P L and Giamarchi T 1998 Phys. Rev. B 57 11356
[15] Persson B N J 1998 Sliding Friction: Physical Priciples and Applications (Berlin: Springer)
Persson B N J 1999 Surf. Sci. Rep. 33 83
[16] Braun O and Kivshar Y S 1998 Phys. Rep. 306 1
Braun O and Kivshar Y S 2003 The Frenkel–Kontorova Model (Berlin: Springer)
[17] Persson B N J 1993 Phys. Rev. Lett. 71 1212 Persson B N J 1993 Phys. Rev. B 48 18140
[18] Floría L M and Falo F 1992 Phys. Rev. Lett. 68 2713
Falo F, Floría L M, Martínez P J and Mazo J J 1993 Phys. Rev. B 48 7434
Mazo J J, Falo F and Floría L M 1995 Phys. Rev. B 52 10433
Floría L M and Mazo J J 1996 Adv. Phys. 45 505
[19] Zheng Z G, Hu B and Hu G 1998 Phys. Rev. B 58 5453
[20] Hu B and Tekić J 2007 Phys. Rev. E 75 056608 Hu B and Tekić J 2005 Phys. Rev. E 72 056602
[21] Volkmuth W D and Austin R H 1992 Nature 358 600
Duke T A J and Austin R H 1998 Phys. Rev. Lett. 80 1552
Viovy J L 2000 Rev. Mod. Phys. 72 813
[22] Wang C L, Duan W S, Hong X R and Chen J M 2008 Appl. Phys. Lett. 93 153116
[23] Weiss D et al 1991 Phys. Rev. Lett. 66 2790
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|