CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Polarization Mechanism of Oxygen Vacancy and Its Influence on Dielectric Properties in ZnO |
WANG Li-Na1, FANG Xiao-Yong1**, HOU Zhi-Ling2, LI Ya-Lin1, WANG Kun1, YUAN Jie3, CAO Mao-Sheng2**
|
1School of Science, Yanshan University, Qinhuangdao 066004
2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
3School of Information Engineering, Central University for Nationalities, Beijing 100081
|
|
Cite this article: |
WANG Li-Na, FANG Xiao-Yong, HOU Zhi-Ling et al 2011 Chin. Phys. Lett. 28 027101 |
|
|
Abstract We report on the mechanism of the dielectric properties of oxygen vacancy in ZnO, using ab initio numerical simulations of oxygen vacancy on the band structure and dielectric properties, to develop photoelectric material applications. It is revealed that the appearance of oxygen vacancies leads to wider energy band gap, obvious blue shift and increase in the peak of dielectric function as compared to the intrinsic ZnO simulation. We explain these unusual phenomena and analyze the dielectric changes with the mechanism of polarization in the semiconductors. It is shown that the main mechanism of influencing dielectric properties is the electron displacement polarization. The result may be helpful for development of photoelectric materials.
|
Keywords:
71.15.Mb
61.72.Up
78.20.Ci
|
|
Received: 29 September 2010
Published: 30 January 2011
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.up
|
(Other materials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Li L J, Zhao M W, Ji Y J, Li F and Liu X D 2010 Chin. Phys. Lett. 27 8086105
[2] Ryu Y and Lee T S 2006 Appl. Phys. Lett. 88 241108
[3] Li D and Haneda H J 2003 Chemosphere 51 129
[4] Comini E, Faglia G, Sberveglieri G, Pan Z W and Wang Z L 2002 Appl. Phys. Lett. 81 1869
[5] Cao M S, Shi X L, Fang X Y, Jin H B, Zhou W and Chen Y J 2007 Appl. Phys. Lett. 91 203110
[6] Fang X Y, Shi X L, Cao M S and Yuan J 2008 J. Appl. Phys. 104 096101
[7] Fang X Y, Cao M S, Shi X L, Hou Z L, Song W L and Yuan J 2010 J. Appl. Phys. 107 054304
[8] Xiong M N, Gu G X, You B and Wu L M 2003 J. Appl. Polymer Sci. 90 1923
[9] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[10] Xu C K, Kim M, Chung S Y and Kim D E 2004 Solid State Commun. 132 837
[11] Wu C Y, Hsu H C, H M Cheng, S Yang and W F Hsieh 2006 J. Cryst. Growth 287 189
[12] Lee E C, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120
[13] Mahan G D 1983 J. Appl. Phys. 54 3825
[14] Chena X B 2008 Solid State Commun. 145 267
[15] Li L Y 2008 Solid State Commun. 146 420
[16] Yu Z G 2007 Physica B 401–402 417
[17] Ding Z H, Xiong Y Y, Zhang L B, Xiong J W and Hou X H 2009 Mater. Rev. 23 79 (in Chinese)
[18] Zhang X Y, Chen Z W, Qi Y P and Feng Y D 2007 Chin. Phys. Lett. 24 1032
[19] Zhang F C, Zhang Z Y, Zhang W H et al 2008 Chin. Phys. Lett. 25 3735
[20] Jin X L, Lou S Y, Kong D G, Li Y C and Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese)
[21] Wang J J, Fang X Y, Feng G Y, Song W L, Hou Z L, Jin H B, Yuan J and Cao M S 2010 Phys. Lett. A 374 2286
[22] Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X and Salamanca-Riba L G 1998 Appl. Phys. Lett. 73 348
[23] Mlilman V and Warren M C 2001 J. Phys. Condens. Matter 13 241
[24] Zwicker G and Jacobi 1985 Solid State Commun. 54 701
[25] Janottj A, Chris G and Van de Walle 2006 J. Cryst. Growth 287 58
[26] Ying X J, Zhang X D and Hao Z W 2007 J. Synth. Cryst. 36 784 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|