Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020305    DOI: 10.1088/0256-307X/28/2/020305
GENERAL |
Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution
Sudha1,2**, B. G. Divyamani1, A. R. Usha Devi3,4
1Department of Physics, Kuvempu University, Shankaraghatta, Shimoga-577 451, India
2DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK.
3Department of Physics, Bangalore University, Bangalore-560 056, India
4Inspire Institute Inc., McLean, VA 22101, USA.
Cite this article:   
Sudha, B. G. Divyamani, A. R. Usha Devi 2011 Chin. Phys. Lett. 28 020305
Download: PDF(460KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states. Specifically we show that among 4−qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian. Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N−qubit states (N≥5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.
Keywords: 03.65.Ud      75.10.Jm      42.50.Dv     
Received: 17 June 2010      Published: 30 January 2011
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020305       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sudha
B. G. Divyamani
A. R. Usha Devi
[1] Sackett C A et al 2000 Nature 404 256
[2] Roos C F et al 2004 Science 304 1478
[3] Leibfried D et al 2005 Nature (London) 438 639
[4] Sorensen A et al 2001 Nature 409 63
[5] Usha Devi A R et al 2007 Phys. Rev. Lett. 98 060501
[6] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[7] Wineland D J et al 1994 Phys. Rev. A 50 67
[8] Agarwal G S and Puri R R 1990 Phys. Rev. A 41 3782
[9] Sorensen A and Molmer K 1999 Phys. Rev. Lett 83 2274
[10] Wang X et al 2001 Phys. Rev. A 64 053815
[11] Wang X 2001 J. Opt. B: Quantum Semiclass. Opt. 3 93
[12] Usha Devi A R et al 2003 Quant. Inf. Proc. 2 207
[13] Usha Devi A R et al 2003 J. Phys. A: Math. Gen. 36 5333
[14] Ulam-Orgikh D and Kitagawa M 2001 Phys. Rev. A 64 052106
[15] Wang X and Molmer K 2002 Eur. Phys. J. D 18 385
[16] Wang X and Sanders B C 2003 Phys. Rev. A 68 012101
[17] Brennen G K et al 1999 Phys. Rev. Lett. 82 1060
[18] Jaksch D et al 1999 Phys. Rev. Lett. 82 1975
[19] UshaDevi A R, Uma M S, Prabhu R and Sudha 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S740
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[3] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020305
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 020305
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 020305
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020305
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020305
[8] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 020305
[9] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 020305
[10] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 020305
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 020305
[12] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 020305
[13] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 020305
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 020305
[15] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 020305
Viewed
Full text


Abstract