Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020205    DOI: 10.1088/0256-307X/28/2/020205
GENERAL |
Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation
WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin
School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010
Cite this article:   
WANG Hong, TIAN Ying-Hui, CHEN Han-Lin 2011 Chin. Phys. Lett. 28 020205
Download: PDF(393KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the modified Clarkson–Kruskal (CK) direct method, we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation. Under some constraint conditions, Lie point symmetry is also obtained. Through the symmetry group, some new exact solutions of the two-dimensional KdV-Burgers equation are found.
Keywords: 02.03.Jr      02.20.Sv      02.20.Tw     
Received: 09 August 2010      Published: 30 January 2011
PACS:  02.03.Jr  
  02.20.Sv (Lie algebras of Lie groups)  
  02.20.Tw (Infinite-dimensional Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020205       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hong
TIAN Ying-Hui
CHEN Han-Lin
[1] Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
[2] Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025
[3] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[4] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 129
[5] Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
[6] Ma H C 2005 Chin. Phys. Lett. 22 554
[7] Zhang L H and Liu X Q 2006 Commun. Theor. Phys. 45 487
[8] Wang L, Liu X Q and Zhou Z Z 2007 Commun. Theor. Phys. 47 403
[9] Zhang L H, Liu X Q and Bai C L 2007 Commun. Theor. Phys. 48 405
[10] Tian Y H, Chen H L and Liu X Q 2009 Commun. Theor. Phys. 51 781
[11] Xu B and Liu X Q 2010 Acta Math. Appl. Sin. 33 118
[12] Johnson R S 1970 J. Fluid Mech. 42 79
[13] van Wijngaarden L 1972 Ann. Rev. Fluid Mech. 4 369
[14] Gao G 1985 Sci. Sin. A 28 457
[15] Yang F and Zhang H Q 2009 Int. J. Nonlin. Sci. l7 84
[16] Tan J Y and Wen S L 2001 J. Math. Res. 21 483
[17] Fan E G, Zhang J and Benny Y C 2001 Phys. Lett. A 201 64
[18] Elgarayhi A and Elhanbaly A 2005 Phys. Lett. A 343 85
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 020205
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 020205
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 020205
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 020205
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 020205
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 020205
[7] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 020205
[8] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 020205
[9] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 020205
[10] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 020205
[11] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 020205
[12] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 020205
[13] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 020205
[14] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 020205
[15] Srinivasa Rao Karumuri. Vibrational Spectra of Distorted Structure Molecules by Using Lie Algebraic Techniques: an Application to Copper and Magnesium Octaethyl Porphyrin[J]. Chin. Phys. Lett., 2010, 27(10): 020205
Viewed
Full text


Abstract