GENERAL |
|
|
|
|
Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation |
WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin
|
School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010
|
|
Cite this article: |
WANG Hong, TIAN Ying-Hui, CHEN Han-Lin 2011 Chin. Phys. Lett. 28 020205 |
|
|
Abstract By using the modified Clarkson–Kruskal (CK) direct method, we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation. Under some constraint conditions, Lie point symmetry is also obtained. Through the symmetry group, some new exact solutions of the two-dimensional KdV-Burgers equation are found.
|
Keywords:
02.03.Jr
02.20.Sv
02.20.Tw
|
|
Received: 09 August 2010
Published: 30 January 2011
|
|
|
|
|
|
[1] Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
[2] Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025
[3] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[4] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 129
[5] Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
[6] Ma H C 2005 Chin. Phys. Lett. 22 554
[7] Zhang L H and Liu X Q 2006 Commun. Theor. Phys. 45 487
[8] Wang L, Liu X Q and Zhou Z Z 2007 Commun. Theor. Phys. 47 403
[9] Zhang L H, Liu X Q and Bai C L 2007 Commun. Theor. Phys. 48 405
[10] Tian Y H, Chen H L and Liu X Q 2009 Commun. Theor. Phys. 51 781
[11] Xu B and Liu X Q 2010 Acta Math. Appl. Sin. 33 118
[12] Johnson R S 1970 J. Fluid Mech. 42 79
[13] van Wijngaarden L 1972 Ann. Rev. Fluid Mech. 4 369
[14] Gao G 1985 Sci. Sin. A 28 457
[15] Yang F and Zhang H Q 2009 Int. J. Nonlin. Sci. l7 84
[16] Tan J Y and Wen S L 2001 J. Math. Res. 21 483
[17] Fan E G, Zhang J and Benny Y C 2001 Phys. Lett. A 201 64
[18] Elgarayhi A and Elhanbaly A 2005 Phys. Lett. A 343 85
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|