CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition |
LI Li-Gong1,2, LIU Shu-Man1**, LUO Shuai1, YANG Tao1, WANG Li-Jun1, LIU Feng-Qi1, YE Xiao-Ling1, XU Bo1, WANG Zhan-Guo1
|
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Department of Physics, Tsinghua University, Beijing 100084
|
|
Cite this article: |
LI Li-Gong, LIU Shu-Man, LUO Shuai et al 2011 Chin. Phys. Lett. 28 116802 |
|
|
Abstract InAs/GaSb type-II superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition. Raman scattering spectroscopy reveals that it is possible to grow superlattices with almost pure GaAs-like and mixed-like (plane of mixed As and Sb atoms that connect the GaSb and InAs layers) interfaces. Introducing the InSb-like interface results in nanopipes and As contamination of the GaSb layers. X-ray diffraction and atomic force microscopy demonstrate that the superlattices with a mixed-like interface have better morphology and crystalline quality.
|
Keywords:
68.65.Cd
81.15.Gh
85.60.Gz
81.05.Ea
|
|
Received: 19 August 2011
Published: 30 October 2011
|
|
PACS: |
68.65.Cd
|
(Superlattices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
|
|
[1] Delaunay Y P, Nguyen M B, Hoffman D and Razeghi M 2008 IEEE J. Quantum Electron. 44 462
[2] Kim S H, Plis E, Gautam N, Myers S, Sharma Y, Dawson R L and Krishna S 2010 Appl. Phys. Lett. 97 143512
[3] Mohseni H, Litvinov I V and Razeghi M 1998 Phys. Rev. B 58 15378
[4] Youngdale R E, Meyer R J, Hoffman A C, Bartoli J F, Grein H C, Young M P, Ehrenreich H, Miles H R and Chow H D 1994 Appl. Phys. Lett. 64 3160
[5] Smith L D and Mailhiot C 1987 J. Appl. Phys. 62 2545
[6] Tomich D H, Mitchel W C, Chow P and Tu C W 1999 J. Cryst. Growth 210 868
[7] Waterman R J, Shanabrook V B, Wagner J R, Yang J M, Davis L J and Omaggio P J 1993 Semicond. Sci. Technol. 8 S106
[8] Mohseni H, Razeghi M, Brown J G and Park S Y 2001 Appl. Phys. Lett. 78 2107
[9] Mallick S, Banerjee K, Ghosh S, Rodriguez B J and Krishna S 2007 IEEE Photon. Technol. Lett. 19 1843
[10] Wang G W, Xu Y Q, Guo J, Tang B, Ren Z W, He Z H and Niu Z C 2010 Chin. Phys. Lett. 27 077305
[11] Zhang B X, Ryou H J, Dupuis D R, Xu C, Mou S, Petschke A, Hsieh C K and Chuang L S 2007 Appl. Phys. Lett. 90 131110
[12] Huang Y, Ryou H J, Dupuis D R, Petschke A, Mandl M and Chuang L S 2010 Appl. Phys. Lett. 96 251107
[13] Booker R G, Klipstein C P, Lakrimi M, Lyapin S, Mason J N, Murgatroyd J I, Nicholas J R, Seong Y T, Symons M D and Walker J P 1995 J. Cryst. Growth 146 495
[14] Wei Y, Gin A, Razeghi M and Brown J G 2002 Appl. Phys. Lett. 80 3262
[15] Shanabrook V B, Bennett R B and Wagner J R 1993 Phys. Rev. B 48 17172
[16] Fasolino A, Molinari E and Maan C J 1987 Superlatt. Microstruct. 3 117
[17] Fasolino A, Molinari E and Maan C J 1986 Phys. Rev. B 33 8889
[18] Herres N, Fuchs F, Schmitz J, Pavlov M K, Wagner J, Ralston D J, Koidl P, Gadaleta C and Scamarcio G 1993 Phys. Rev. B 53 15688
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|