GENERAL |
|
|
|
|
Spiral Wave Generation in a Vortex Electric Field |
YUAN Xiao-Ping1, CHEN Jiang-Xing2, ZHAO Ye-Hua2**, LOU Qin2, WANG Lu-Lu2, SHEN Qian2
|
1Information Engineering School, Hangzhou Dianzi University, Hangzhou 310018
2School of Science, Hangzhou Dianzi University, Hangzhou 310018
|
|
Cite this article: |
YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua et al 2011 Chin. Phys. Lett. 28 100505 |
|
|
Abstract The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chirality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.
|
Keywords:
05.10.-a
05.45.-a
82.40.CK
|
|
Received: 22 July 2011
Published: 28 September 2011
|
|
PACS: |
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
82.40.Ck
|
(Pattern formation in reactions with diffusion, flow and heat transfer)
|
|
|
|
|
[1] Grill S, Zykov V S and Muller S C 1995 Phys. Rev. Lett. 75 3368
[2] Corelova N A and Bures J 1983 J. Neurobiol. 14 353
[3] Goryachev A and Kapral R 1996 Phys. Rev. Lett. 76 1619
[4] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[5] Ouyang Q and Flesselles J M 1996 Nature 379 143
[6] Cao Z J, Li P F, Zhang H 2007 Chaos 17 015107
[7] Holden A V 1998 Nature 392 20
[8] Hu G, Xiao J H, Chua L O and Pivka L 1998 Phys. Rev. Lett. 80 1884
[9] Kim M, Bertram M, Pollmann M, Oertzen A V, Mikhailov A S Rotermund H H and Ertl G 2001 Science 292 1357
[10] Bär M, Gottschalk N, Eiswirth M and Ertl G 1994 J. Chem. Phys. 100 1202
[11] Ouyang Q, Swinney, H L and Li G 2000 Phys. Rev. Lett. 84 1047
[12] Shao X, Ren Y and Ouyang Q 2006 Chin. Phys. 15 513
[13] Pollmann M, Rotermund H H, Ertl G, Li X and Kevrekids I G 2001 Phys. Rev. Lett. 86 6038
[14] Bär M, Kevrekids I G, Rotermund H H and Ertl G 1995 Phys. Rev. E 52 R5739
[15] Punckt C, Stich M, Beta C and Rotermund H H 2008 Phys. Rev. E 77 046222
[16] Wolff J, Papathanasiou A G, Kevrekidis J G, Rotermund H H and Ertl G 2001 Science 294 134
[17] Zhang H, Chen J X, Li Y Q and Xu J R 2006 J. Chem. Phys. 125 204503
[18] Chen J X, Xu J R, Yuan X P and Ying H P 2009 J. Chem. Phys. 113 849
[19] Ma J, Yi M, Li B W and Li Y L 2008 Chin. Phys. B 17 2438
[20] Tang G N, Deng M Y, Hu B B and Hu G 2008 Phys. Rev. E 77 046217
[21] Zhang H, Ruan X S, Hu B B and Ouyang Q 2004 Phys. Rev. E 70 016212
[22] Xiao J H, Hu G and Zhang H 2005 Europhys. Lett. 69 29
[23] Chen J X and Hu B B 2008 Europhys. Lett. 84 34002
[24] Chen W Q, Zhang H, Ying H P, Li B W and Chen J X 2007 J. Chem. Phys. 127 154708
[25] Li G Z, Chen Y Q, Tang G N and Liu J X 2011 Chin. Phys. Lett. 28 020504
[26] Yang J Z, Xie F G, Qu Z L Garfinkel and Alan 2003 Phys. Rev. Lett. 91 148302
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|