Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100505    DOI: 10.1088/0256-307X/28/10/100505
GENERAL |
Spiral Wave Generation in a Vortex Electric Field
YUAN Xiao-Ping1, CHEN Jiang-Xing2, ZHAO Ye-Hua2**, LOU Qin2, WANG Lu-Lu2, SHEN Qian2
1Information Engineering School, Hangzhou Dianzi University, Hangzhou 310018
2School of Science, Hangzhou Dianzi University, Hangzhou 310018
Cite this article:   
YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua et al  2011 Chin. Phys. Lett. 28 100505
Download: PDF(1140KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chirality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.
Keywords: 05.10.-a      05.45.-a      82.40.CK     
Received: 22 July 2011      Published: 28 September 2011
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100505       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Xiao-Ping
CHEN Jiang-Xing
ZHAO Ye-Hua
LOU Qin
WANG Lu-Lu
SHEN Qian
[1] Grill S, Zykov V S and Muller S C 1995 Phys. Rev. Lett. 75 3368
[2] Corelova N A and Bures J 1983 J. Neurobiol. 14 353
[3] Goryachev A and Kapral R 1996 Phys. Rev. Lett. 76 1619
[4] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[5] Ouyang Q and Flesselles J M 1996 Nature 379 143
[6] Cao Z J, Li P F, Zhang H 2007 Chaos 17 015107
[7] Holden A V 1998 Nature 392 20
[8] Hu G, Xiao J H, Chua L O and Pivka L 1998 Phys. Rev. Lett. 80 1884
[9] Kim M, Bertram M, Pollmann M, Oertzen A V, Mikhailov A S Rotermund H H and Ertl G 2001 Science 292 1357
[10] Bär M, Gottschalk N, Eiswirth M and Ertl G 1994 J. Chem. Phys. 100 1202
[11] Ouyang Q, Swinney, H L and Li G 2000 Phys. Rev. Lett. 84 1047
[12] Shao X, Ren Y and Ouyang Q 2006 Chin. Phys. 15 513
[13] Pollmann M, Rotermund H H, Ertl G, Li X and Kevrekids I G 2001 Phys. Rev. Lett. 86 6038
[14] Bär M, Kevrekids I G, Rotermund H H and Ertl G 1995 Phys. Rev. E 52 R5739
[15] Punckt C, Stich M, Beta C and Rotermund H H 2008 Phys. Rev. E 77 046222
[16] Wolff J, Papathanasiou A G, Kevrekidis J G, Rotermund H H and Ertl G 2001 Science 294 134
[17] Zhang H, Chen J X, Li Y Q and Xu J R 2006 J. Chem. Phys. 125 204503
[18] Chen J X, Xu J R, Yuan X P and Ying H P 2009 J. Chem. Phys. 113 849
[19] Ma J, Yi M, Li B W and Li Y L 2008 Chin. Phys. B 17 2438
[20] Tang G N, Deng M Y, Hu B B and Hu G 2008 Phys. Rev. E 77 046217
[21] Zhang H, Ruan X S, Hu B B and Ouyang Q 2004 Phys. Rev. E 70 016212
[22] Xiao J H, Hu G and Zhang H 2005 Europhys. Lett. 69 29
[23] Chen J X and Hu B B 2008 Europhys. Lett. 84 34002
[24] Chen W Q, Zhang H, Ying H P, Li B W and Chen J X 2007 J. Chem. Phys. 127 154708
[25] Li G Z, Chen Y Q, Tang G N and Liu J X 2011 Chin. Phys. Lett. 28 020504
[26] Yang J Z, Xie F G, Qu Z L Garfinkel and Alan 2003 Phys. Rev. Lett. 91 148302
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100505
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100505
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100505
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100505
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100505
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100505
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 100505
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100505
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100505
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100505
[11] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 100505
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100505
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100505
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 100505
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100505
Viewed
Full text


Abstract