Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100301    DOI: 10.1088/0256-307X/28/10/100301
GENERAL |
Semiquantum Key Distribution Using Entangled States
WANG Jian, ZHANG Sheng, ZHANG Quan, TANG Chao-Jing
School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073
Cite this article:   
WANG Jian, ZHANG Sheng, ZHANG Quan et al  2011 Chin. Phys. Lett. 28 100301
Download: PDF(394KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, Boyer et al. presented a novel semiquantum key distribution protocol [Phys. Rev. Lett. 99 (2007) 140501] by using four quantum states, each of which is randomly prepared in the Z or X basis. Here we present a semiquantum key distribution protocol by using maximally entangled states in which quantum Alice shares a secret key with classical Bob. Quantum Alice has the ability to prepare Bell states and perform Bell basis or computational basis measurement. Classical Bob is restricted to measuring, preparing a particle in the computational basis, reflecting or reordering the particles. The qubit efficiency of the protocol improves to 50% and the protocol can be modified to a measure-resend protocol or a protocol without quantum memory. We also show that the protocol is secure against eavesdropping.
Keywords: 03.67.Dd      03.67.Hk     
Received: 21 June 2011      Published: 28 September 2011
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100301       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jian
ZHANG Sheng
ZHANG Quan
TANG Chao-Jing
[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems and signal Processing (Bangalore, India) (New York: IEEE) p 175
[2] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[3] Bechmann-Pasquinucci H and Peres A 2000 Phys. Rev. Lett. 85 3313
[4] Bruss D 1998 Phys. Rev. Lett. 81 3018
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[7] Curty M, Lewenstein M and Lutkenhaus N 2004 Phys. Rev. Lett. 92 217903
[8] Boyer M, Kenigsberg D and Mor T 2007 Phys. Rev. Lett. 99 140501
[9] Boyer M, Gelles R, Kenigsberg D and Mor T 2009 Phys. Rev. A 79 032341
[10] Lu H and Cai Q Y 2008 Int. J. Quantum Inform. 6 1195
[11] Zou X, Qiu D, Li L, Wu L and Li L 2009 Phys. Rev. A 79 052312
[12] Li Q, Chan W H and Long D Y 2010 Phys. Rev. A 82 022303
[13] Tan Y G, Lu H and Cai Q Y 2009 Phys. Rev. Lett. 102 098901
[14] Stinespring W F 1955 Proc. Am. Math. Soc. 6 211
[15] Inamori H, Rallan L and Vedral V 2001 J. Phys. A 34 6913
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 100301
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 100301
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 100301
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 100301
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 100301
[6] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 100301
[7] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 100301
[8] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 100301
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 100301
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 100301
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 100301
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 100301
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 100301
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 100301
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 100301
Viewed
Full text


Abstract