Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100302    DOI: 10.1088/0256-307X/28/10/100302
GENERAL |
Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates
DUAN Ya-Fan1, XU Zhen1, QIAN Jun1, SUN Jian-Fang1, JIANG Bo-Nan1, HONG Tao2**
1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2Center for Macroscopic Quantum Phenomena, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203
Cite this article:   
DUAN Ya-Fan, XU Zhen, QIAN Jun et al  2011 Chin. Phys. Lett. 28 100302
Download: PDF(785KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically analyze the dynamic behavior of Bose–Einstein condensate (BEC) in a one-dimensional disordered potential before it completely loses spatial quantum coherence. We find that both the disorder statistics and the atom interactions produce remarkable effects on localization. We also find that the single phase of the initial condensate is broken into many small pieces while the system approaches localization, showing a counter-intuitive step-wise phase but not a thoroughly randomized phase. Although the condensates as a whole show less flow and expansion, the currents between adjacent phase steps retain strong time dependence. Thus we show explicitly that the localization of a finite size Bose–Einstein condensate is a dynamic equilibrium state.
Keywords: 03.75.Kk      03.75.Nt      64.60.Cn     
Received: 25 May 2011      Published: 28 September 2011
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  64.60.Cn (Order-disorder transformations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100302       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Ya-Fan
XU Zhen
QIAN Jun
SUN Jian-Fang
JIANG Bo-Nan
HONG Tao
[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Chabe J, Lemarie G, Gremaud B, Delande D, Szriftgiser P and Garreau J C 2008 Phys. Rev. Lett. 101 4
[3] Billy J, Josse V, Zuo Z C, Bernard A, Hambrecht B, Lugan P, Clement D, Sanchez-Palencia L, Bouyer P and Aspect 2008 Nature 453 891
[4] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[5] Deissler B, Zaccanti M, Roati G, D'Errico C, Fattori M, Modugno M, Modugno G and Inguscio M 2010 Nature Physics 6 354
[6] Roati G, Zaccant M, D'Errico C, Catani J, Modugno M, Simoni A, Inguscio M and Modugno G 2007 Phys. Rev. Lett. 99 010403
[7] Pasienski M, McKay D, White M and DeMarco B 2010 Nature Phys. 6 677
[8] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
[9] Chen Y P, Hitchcock J, Dries D, Junker M, Welford C and Hulet R G 2008 Phys. Rev. A 77 4
[10] Kivshar Y S, T J Alexander and S K Turitsyn 2001 Phys. Lett. A 278 225
[11] Perez-Garcia V M, Michinel H and Herrero H 1998 Phys. Rev. A 57 3837
[12] Dainty J C 1975 Laser Speckle and Related Phenomena (Berlin: Springer-Verlag) p 286
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 100302
[2] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 100302
[3] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 100302
[4] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 100302
[5] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 100302
[6] MENG Qing-Kuan**, ZHU Jian-Yang . Constrained Traffic of Particles on Complex Networks[J]. Chin. Phys. Lett., 2011, 28(7): 100302
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 100302
[8] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 100302
[9] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 100302
[10] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 100302
[11] LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei,. Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential[J]. Chin. Phys. Lett., 2010, 27(4): 100302
[12] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 100302
[13] XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice[J]. Chin. Phys. Lett., 2009, 26(9): 100302
[14] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 100302
[15] WANG Xiao-Rui, YANG Lu, TAN Xin-Zhou, XIONG Hong-Wei, LÜ, Bao-Long. Bose-Einstein Condensates in a One-Dimensional Optical Lattice: from Superfluidity to Number-Squeezed States[J]. Chin. Phys. Lett., 2009, 26(8): 100302
Viewed
Full text


Abstract