Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100401    DOI: 10.1088/0256-307X/28/10/100401
GENERAL |
Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes
GUO Guang-Hai**, DING Xia
School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061
Cite this article:   
GUO Guang-Hai, DING Xia 2011 Chin. Phys. Lett. 28 100401
Download: PDF(387KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motivated by the new physical interpretation of quasinormal modes proposed by Maggiore [Phys. Rev. Lett. 100 (2008) 141301], we investigate the quantization of large Schwarzschild-Anti de Sitter black holes in even-dimensional spacetimes, from the interesting highly real quasinormal modes found recently. Following Maggiore's treatment and Kunstatter's method, we derive the area and entropy spectra of the black holes. It is found that the results from both approaches are in full consistency. This implies that one can quantize a black hole via different asymptotic quasinormal modes besides the high damping ones that are usually adopted in the literature. Furthermore, we find that the area and entropy spectra are equidistant and independent of the cosmological constant. However, the spacings depend on the black hole dimension.
Keywords: 04.70.Dy      97.60.Lf     
Received: 02 May 2011      Published: 28 September 2011
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Guang-Hai
DING Xia
[1] Bekenstein J D, 1974 Lett. Nuovo Cimento 11 467
[2] Bekenstein J D, Mukahnov V F 1995 Phys. Lett. B 360 7
[3] Louko J and Makela J 1996 Phys. Rev. D 54 4982
[4] Makela J 1997 Phys. Lett. B 390 115
[5] Bekenstein J D arXiv:gr-qc/9710076
[6] Bekenstein J D arXiv:gr-qc/9808028
[7] Wang J and Jing J 2005 Chin. Phys. Lett. 22 2766
[8] Jing J and Ding C 2008 Chin. Phys. Lett. 25 858
[9] Hod S 1998 Phys. Rev. Lett. 81 4293
[10] Kunstatter G 2003 Phys. Rev. Lett. 90 161301
[11] Dreyerr O 2003 Phys. Rev. Lett. 90 081301
[12] Natario J and Schiappa R 2004 Adv. Theor. Math. Phys. 8 1001
[13] Maggiore M 2008 Phys. Rev. Lett. 100 141301
[14] Vagenas E C 2008 JHEP 11 073
[15] Medved A J M 2008 Class. Quantum Grav. 25 205014
[16] Wei S, Li R, Liu Y and Ren J 2009 JHEP 03 076
[17] Kwon Y and Nam S 2010 Class. Quantum Grav. 27 125007
[18] Wei S, Liu Y, Yang K and Zhong Y 2010 Phys. Rev. D 81 104042
[19] Li W, Xu L and Lu J 2009 Phys. Lett. B 676 177
[20] Chen D, Yang H and Zu X 2010 Eur. Phys. J. C 69 289
[21] Ren J, Song S and Wei S 2010 Commun. Theor. Phys. 53 1097
[22] Guo G and Guo J 2011 Mod. Phys. Lett. A 26(4) 303
[23] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577
[24] Berti E, Cardoso V and Starinets A 2009 Class. Quantum Grav. 26 163001
[25] Daghigh R G and Green M D 2009 Class. Quantum Grav. 26 125017
[26] Daghigh R G 2009 JHEP 04 045
[27] Abbott L F and Deser S 1982 Nucl. Phys. B 195 76
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 100401
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 100401
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 100401
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 100401
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 100401
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 100401
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 100401
[8] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 100401
[9] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 100401
[10] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 100401
[11] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 100401
[12] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 100401
[13] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 100401
[14] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 100401
[15] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 100401
Viewed
Full text


Abstract