Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 057502    DOI: 10.1088/0256-307X/27/5/057502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effective Anisotropy in Magnetically Nd2Fe14B/α-Fe Nanocomposite
GUO Jia-Jun1, CHEN Lei2, ZHAO Xu1, FAN Su-Li1, CHEN Wei1
1Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050016 2Physics Teaching Office, Beijing Jiaotong University Haibin College, Huanghua 061100
Cite this article:   
GUO Jia-Jun, CHEN Lei, ZHAO Xu et al  2010 Chin. Phys. Lett. 27 057502
Download: PDF(451KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering different contact situations of grains, we investigate the effects of exchange-coupling interaction on effective anisotropies of magnetically soft α-Fe grains, hard Nd2Fe14B grains and Nd2Fe14B/α-Fe nanocomposite. An expression of effective anisotropy suitable for different degrees of exchange-coupling between grains is presented. The calculation results show that the exchange-coupling interaction increases the average anisotropy of soft grains and decreases that of hard grains. The effective anisotropy of Nd2Fe14B/α-Fe nanocomposite decreases smoothly with decreasing grain size when the grain size is larger than 20 nm while it decreases dramatically with further decrease of the grain size. In order to maintain high coercivity in Nd2Fe14B/α-Fe nanocomposite, the grain size should not be less than 20nm.
Keywords: 75.30.Et      75.30.Gw      75.50.Tt     
Received: 02 December 2009      Published: 23 April 2010
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.30.Gw (Magnetic anisotropy)  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/057502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/057502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Jia-Jun
CHEN Lei
ZHAO Xu
FAN Su-Li
CHEN Wei
[1] Pang Z Y et al 2003 Chin. Phys. Lett. 20 2033
[2] Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812
[3] Zhang X Y et al 2001 Appl. Phys. Lett. 79 2426
[4] Li W et al 2006 J. Appl. Phys. 99 126103
[5] Han G B et al 2004 J. Magn. Magn. Mater. 281 6
[6] Feng W C et al 2005 J. Appl. Phys. 98 044305
[7] Gao R W et al 2003 J. Appl. Phys. 94 664
[8] Arcas J et al 1998 Phys. Rev. B 58 5193
[9] Sun Y et al 2007 J. Appl. Phys. 101 063908
[10] Kronmüller H et al 1996 J. phys. D 29 2274
[11] Herner G 1990 IEEE Trans. Mag. 26 1397
[12] Chen Z M et al 2001 J. Appl. Phys. 89 2299
[13] Chen W et al 2004 Mater. Sci. Eng. B 110 107
Related articles from Frontiers Journals
[1] ZHANG Jing-Jing,GAO Hong-Mei,YAN Yu,BAI Xue,WANG Wen-Quan,SU Feng,DU Xiao-Bo**. Processing YCo5 Permanent Magnetic Submicron Flakes by Surfactant-Assisted High-Energy Ball Milling[J]. Chin. Phys. Lett., 2012, 29(5): 057502
[2] LIU Min**, HAN Guang-Bing, GAO Ru-Wei . Magnetic Performance of a Nanocomposite Permanent Material[J]. Chin. Phys. Lett., 2011, 28(8): 057502
[3] LI Ju-Fen, KUANG Xiao-Yu, ** . Analysis of Ground-State Zero-Field Splitting for Mn2+ in ZnNbOF56(H2O) and CoNbOF56(H2O)[J]. Chin. Phys. Lett., 2011, 28(6): 057502
[4] LÜ, Dong-Li, XU Chen. Magnetization Switching in a Small Disk with Shape Anisotropy[J]. Chin. Phys. Lett., 2010, 27(9): 057502
[5] TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan. Structural and Magnetic Properties of [Fe/Ni]N Multilayers[J]. Chin. Phys. Lett., 2010, 27(7): 057502
[6] LIU Li-Hu, GU Jian-Jun, , LI Hai-Tao, , CAI Ning, SUN Hui-Yuan,. Synthesis and Characteristics of Electrodeposited CoxZn1-x Nanorods[J]. Chin. Phys. Lett., 2010, 27(6): 057502
[7] WANG Fei, YAN Yu, YUAN Zhou, BAI Xue, DU Xiao-Bo, WANG Wen-Quan, SU Feng, JIN Han-Min. Permanent Magnetic Properties of Melt-Spun YCo5Cx Ribbons[J]. Chin. Phys. Lett., 2010, 27(6): 057502
[8] HAO Yan-Ming, FU Bin, ZHOU Yan, ZHAO Miao. Phase-Transition and Magnetic Moment of the Gd3+ Ion in the Gd2Fe17 Compound[J]. Chin. Phys. Lett., 2009, 26(7): 057502
[9] GAO Ming-Liang, KUANG Xiao-Yu, ZHAO Ya-Ru, QI Lin, LI Yan-Fang. Correlation between Zero-Field Splitting and Site Distortions of Cr3+ Ions in NH4Cl:Cr3+ System: a Complete Energy Matrix Study[J]. Chin. Phys. Lett., 2009, 26(5): 057502
[10] ZHANG Jing, DU Jun, BAI Xiao-Jun, YOU Biao, ZHANG Wei, HU An. Training Effect and Hysteretic Behaviour of Angular Dependence of Exchange Bias in Co/IrMn Bilayers[J]. Chin. Phys. Lett., 2009, 26(4): 057502
[11] ZHAO Jing, WANG Yin-Jun, HAN Xiu-Feng. Dependence of Interlayer AF Coupling on Ferromagnetic Layer Thickness in [Pt/Co]5/Ru/[Co/Pt]5 Multilayers[J]. Chin. Phys. Lett., 2009, 26(3): 057502
[12] M. Farahmandjou, S. A. Sebt, S. S. Parhizgar, P. Aberomand, M. Akhavan. Stability Investigation of Colloidal FePt Nanoparticle Systems by Spectrophotometer Analysis[J]. Chin. Phys. Lett., 2009, 26(2): 057502
[13] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 057502
[14] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 057502
[15] XING Peng-Fei, CHEN Yan-Xue, TANG Min-Jian, YAN Shi-Shen, LIU Guo-Lei, MEI Liang-Mo, JIAO Jun,. Room-Temperature Anisotropic Ferromagnetism in Fe-Doped In2O3 Heteroepitaxial Films[J]. Chin. Phys. Lett., 2009, 26(11): 057502
Viewed
Full text


Abstract