CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Mechanism of Visible Photoactivity of F-Doped TiO2 |
GUO Mei-Li1, ZHANG Xiao-Dong2, LIANG Chun-Tian1, JIA Guo-Zhi1 |
1Department of Physics, Tianjin Institute of Urban Construction, Tianjin 300384 2Department of Health Physics, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192 |
|
Cite this article: |
GUO Mei-Li, ZHANG Xiao-Dong, LIANG Chun-Tian et al 2010 Chin. Phys. Lett. 27 057103 |
|
|
Abstract We calculate the electronic structure and optical properties of F-doped anatase TiO2. The results indicate that the band gap of F-doped TiO2 increases slightly compared with the pure TiO2. However, it is interesting that the visible absorption of F-doped TiO2 located between 600 and 700 nm is observed, and it enhances gradually with the increasing F concentration. Furthermore, according to the results of densities of states and imaginary part of dielectric functionε2(ω), we propose that the transition between Ti 3d and Ti 3d states may be responsible for the visible absorption, but not the band gap narrowing.
|
Keywords:
71.15.Mb
71.20.Nr
78.20.Ek
|
|
Received: 01 December 2009
Published: 23 April 2010
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
78.20.Ek
|
(Optical activity)
|
|
|
|
|
[1] Umebayashi T, Yamaki T, Itoh H and Asai K 2002 J. Phys. Chem. Solids 63 1909 [2] Weng H M, Dong J M, Fukumura T, Kawasaki M and Kawazoe Y 2006 Phys. Rev. B 73 121201 [3] Chen X B and Burda 2008 J. Am. Chem. Soc. 130 5018 [4] In S, Orlov A, Berg R, Garcia F, Jimenez S P, Tikhov M S, Wright D S and Lambert R M J 2007 J. Am. Chem. Soc. 129 13790 [5] Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T and Matsumura M 2004 Appl. Catal. A 265 115 [6] Jagadale T C, Takale S P, Sonawane R S, Joshi H M, Patil S I, Kale B and Ogale S B 2008 J. Phys. Chem. C 112 14595 [7] Diwald O, Thompson T L, Zubkov T, Goralski Ed G, Walck S D and Yates J T 2004 J. Phys. Chem. B 108 6004 [8] Lin Z S, Orlov A, Lambert R M and Payne M C 2005 J. Phys. Chem. B 109 20948 [9] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269 [10] Yu J G, Yu J C, Cheng B, Hark S K and Iu K 2003 J. Solid State Chem. 174 372 [11] Li D, Haneda H, Labhsetwar N, Hishita S and Ohashi N 2005 Chem. Phys. Lett. 401 579 [12] Li D, Ohashi N, Hishita S, Kolodiazhnyi T and Haneda H J 2005 Solid State Chem. 178 3293 [13] Hattori A and Tada H J 2001 Sol-Gel. Sci. Technol. 22 47 [14] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 [15] Huang L M, Rosa A L and Ahuja R 2006 Phys. Rev. B 74 075206 [16] Li S S, GaiY Q, Li J B, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402 [17] Asahi R, Taga Y, Mannstadt W and Freeman A 2000 Phys. Rev. B 61 7459 [18] Mo S D and Ching W Y 1995 Phys. Rev. B 51 13023 [19] Tian F H and Liu C B 2006 J. Phys. Chem. B 110 17866 [20] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721 [21] Zhang X D, Guo M L, Liu C L, Li W X and Hong X F 2008 Appl. Phys. Lett. 93 012103 [22] Xie Y, Li Y Z and Zhao X J 2007 J. Mol. Catal. A 277 119 [23] Zhou J K, Lv L, Yu J Q, Li H L, Guo P Z, Sun H and Zhao X S 2008 J. Phys. Chem. C 112 5316 [24] Phattalung S N, Smith M F, Kim K, Du M H, Wei S H, Zhang S B and Limpijumnong S 2006 Phys. Rev. B 73 125205 [25] SuY L, Zhang X W, Han S, Chen X Q and Lei L C 2007 Electrochem. Commun. 9 2291
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|