CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Variation of Optical Quenching of Photoconductivity with Resistivity in Unintentional Doped GaN |
HOU Qi-Feng1, WANG Xiao-Liang1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, YANG Cui-Bai1,2, LI Jin-Min1
|
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 2Key Laboratory of Semiconductor Materials Science, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 |
|
Cite this article: |
HOU Qi-Feng, WANG Xiao-Liang, XIAO Hong-Ling et al 2010 Chin. Phys. Lett. 27 057104 |
|
|
Abstract The optical quenching of photoconductivity under dual illumination in GaN samples with different resistivity is investigated to reveal the variation of deep levels. The samples are grown by metal organic chemical vapour deposition without intentional doping. Quenching bands centered at 1.35 eV, 1.55 eV, 1.98 eV, and 2.60 eV are observed. It is found that the 1.98 eV quenching band is dominated in all the samples and the 2.60 eV band is observed only in the high-resistivity samples. The possible defect levels responsible for the quenching bands and the origin of different quenching behaviour at 2.60 eV are discussed. It is suggested that the defect level responsible for quenching at 2.60 eV plays an important role for the enhancement of resistivity.
|
Keywords:
71.55.Eq
85.30.Tv
|
|
Received: 11 January 2010
Published: 23 April 2010
|
|
|
|
|
|
[1] Yang L, Hao Y, Ma X H, Quan S, Hu G Z, Jiang S G and Yang L Y 2009 Chin. Phys. Lett. 26 117104 [2] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 IEEE Device Research Conference (State College, PA, USA, 26--28 June 2006) 64th p 151 [3] Yang L, Ma J J, Zhu C, Hao Y and Ma X H 2010 Chin. Phys. Lett. 27 027102 [4] Martin G M, Farges J P, Jacob G and Hallais J P 1980 J. Appl. Phys. 51 2840 [5] Arehart A R, Corrion A, Poblenz C, Speck J S, Mishra U K and Ringel S A 2008 Appl. Phys. Lett. 93 112101 [6] Seager C H, Wright A F, Yu J and Götz W 2002 J. Appl. Phys. 92 6553 [7] Xu H Z, Wang Z G, Harrison I, Bell A, Ansell B J, Winser A J, Cheng T S, Foxon C T and Kawabe M 2000 J. Cryst. Growth. 217 228 [8] Newman R and Tyler W W 1954 Phys. Rev. 96 882 [9] Bube R H 1955 Phys. Rev. 99 1105 [10] Bube R H and Lind E L 1958 Phys. Rev. 110 1040 [11] Huang Z C, Mptt D B, Shu P K, Zhang R, Chen J C and Wickenden D K 1997 J. Appl. Phys. 82 2707 [12] Lin T Y, Yang H C and Chen Y F 2000 J. Appl. Phys. 87 3404 [13] Fang C B, Wang X L, Xiao H L, Hu G X, Wang C M, Wang X Y, Li J P, Wang J X, Li C J, Zeng Y P, Li J M and Wang Z G 2007 J. Cryst. Growth 298 800 [14] Cai S, Parish G, Umana-Membreno G A, Dell J M and Nener B D 2004 J. Appl. Phys. 95 1081 [15] Kim N H, Kang T W and Kim T W 2004 J. Mater. Sci. 39 6343 [16] Gorczyca I, Christensen N E and Svane A 2002 Phys. Rev. B 66 075210 [17] Elsner J, Joens R, Heggie M I, Sitch P K, Haugk M, Frauenheim Th, Oberg S and Briddon P R 1998 Phys. Rev. B 58 12571--12574 [18] Neugebauer J and Van de Walle C G 1994 Phys. Rev. B 50 8067--70 [19] Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304 [20] Götz W, Johnson N M, Amano H and Akasaki I 1994 Appl.Phys. Lett. 65 463 [21] Mattila T, Seitsonen A P and Nieminen R M 1996 Phys. Rev. B 54 1474 [22] Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301 [23] Lu L, Shen B, Xu F J, Xu J, Gao B, Yang Z J, Zhang G Y, Zhang X P and Yu D P 2007 J. Appl. Phys. 102 033510
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|