Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050305    DOI: 10.1088/0256-307X/27/5/050305
GENERAL |
Squeezing-Displacement Dynamics for One-Dimensional Potential Well with Two Mobile Walls where Wavefunctions Vanish
FAN Hong-Yi1,2, CHEN Jun-Hua2, WANG Tong-Tong3
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 2Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 3School of Mathematics and Physics, Huangshi Institute of Technology, Huangshi 435003
Cite this article:   
FAN Hong-Yi, CHEN Jun-Hua, WANG Tong-Tong 2010 Chin. Phys. Lett. 27 050305
Download: PDF(277KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that the dynamics for a particle confined in a one-dimensional potential well with two mobile boundaries where wavefunctions vanish can be converted to the case as if the boundary was time-independent at the expense of an appropriate time-dependent Hamiltonian. The squeezing-displacement operator can be derived, and the corresponding Hamiltonian is determined by the situation of mobile boundaries.
Keywords: 03.65.Ca      42.50.Db     
Received: 23 February 2010      Published: 23 April 2010
PACS:  03.65.Ca (Formalism)  
  42.50.Db  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050305       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Hong-Yi
CHEN Jun-Hua
WANG Tong-Tong
[1] For a review, see Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[2] Schiff L 1967 Quantum Mechanics (New York: McGraw-Hill)
[3] Merzbacher E 1970 Quantum Mechanics (New York: John-Wiley \& Sons)
[4] Fan H Y 2003 J. Opt. B Quantum Semiclass. Opt. 5 R147
[5] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[6] Hu L Y and Fan H Y 2009 Chin. Phys. Lett. 26 060307
[7] Fan H Y and Hu L Y 2008 Chin. Phys. Lett. 25 513
[8] Fan H Y, Wang T T and Hu L Y 2008 Chin. Phys. Lett. 25 3539
[9] Fan H Y and Jiang N Q 2002 Chin. Phys. Lett. 19 1403
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 050305
[2] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 050305
[3] Koji Nagata. Bell Operator Method to Classify Local Realistic Theories[J]. Chin. Phys. Lett., 2010, 27(3): 050305
[4] FAN Hong-Yi, JIANG Nian-Quan. Relation between Characteristic Function of Density Operator and Tomogram[J]. Chin. Phys. Lett., 2009, 26(11): 050305
[5] XU Xue-Fen, ZHU Shi-Qun. Wigner Function of Thermo-Invariant Coherent State[J]. Chin. Phys. Lett., 2008, 25(8): 050305
[6] WANG Zhi-Yong, XIONG Cai-Dong, Keller Ole. The First-Quantized Theory of Photons[J]. Chin. Phys. Lett., 2007, 24(2): 050305
[7] CHEN Jing-Bo. Multisymplectic Geometry and Its Applications for the Schrodinger Equation in Quantum Mechanics[J]. Chin. Phys. Lett., 2007, 24(2): 050305
[8] Babayev A. M., Cakmaktepe S.. The Singular Kane Oscillator[J]. Chin. Phys. Lett., 2006, 23(1): 050305
[9] ZHANG Yong, CAO Wan-Cang, LONG Gui-Lu,. Creation of Multipartite Entanglement and Entanglement Transfer via Heisenberg Interaction[J]. Chin. Phys. Lett., 2005, 22(9): 050305
[10] B. Gö, nül. Exact Treatment of l ≠ 0 States[J]. Chin. Phys. Lett., 2004, 21(9): 050305
[11] B.Gö, nül. Generalized Supersymmetric Perturbation Theory[J]. Chin. Phys. Lett., 2004, 21(12): 050305
[12] HOU Guang, HUANG Min-Xin, ZHANG Yong-De,. Quantum Multiple Access Channel[J]. Chin. Phys. Lett., 2002, 19(1): 050305
[13] FAN Hong-Yi, CHENG Hai-Ling. Two-Parameter Radon Transformation of the Wigner Operator and Its Inverse[J]. Chin. Phys. Lett., 2001, 18(7): 050305
[14] FAN Hong-Yi, LIU Nai-Le. Mixed Squeezing for a Pair of Two-Mode Squeezed States[J]. Chin. Phys. Lett., 2001, 18(3): 050305
[15] FAN Hong-Yi, SUN Zhi-Hu. Minimum Uncertainty States for Number-Difference-Phase Uncertainty Relation in NFM Operational Phase Description[J]. Chin. Phys. Lett., 2000, 17(4): 050305
Viewed
Full text


Abstract