Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050304    DOI: 10.1088/0256-307X/27/5/050304
GENERAL |
Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models
ZHANG Hong-Biao1, TIAN Li-Jun2,3
1Institute of Theoretical Physics, Northeast Normal University, Changchun 130024 2Department of Physics, College of Science, Shanghai University, Shanghai 200444 3Shanghai Key Lab for Astrophysics, Shanghai 200234
Cite this article:   
ZHANG Hong-Biao, TIAN Li-Jun 2010 Chin. Phys. Lett. 27 050304
Download: PDF(620KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We mainly explore the fidelity susceptibility based on the Lie algebraic method. On physical grounds, the exact expressions of fidelity susceptibilities can be respectively obtained in SU(2) and SU(1,1) algebraic structure models, which are applied to one-body system and many-body systems, such as the single spin model, the single-mode squeeze harmonic oscillator model and the BCS model. In terms of the double-time Green-function method, our general conclusions are illustrated with two models which exhibit the fidelity susceptibilities at the finite temperature and Τ=0.
Keywords: 03.67.-a      64.70.Tg      03.65.Ud      75.10.Jm     
Received: 19 March 2010      Published: 23 April 2010
PACS:  03.67.-a (Quantum information)  
  64.70.Tg (Quantum phase transitions)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050304       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hong-Biao
TIAN Li-Jun
[1] Peres A 1984 Phys. Rev. A 30 1610
[2] Pellegrini F and Montangero S 2007 Phys. Rev. A 76 052327
[3] Weinstein Y, Lloyd and and Isallis C 2002 Phys. Rev. Lett. 89 214101
[4] Zanardi P and Paunkovic N 2006 Phys. Rev. E 74 031123
[5] Nilesen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Combridge University) ISBN:0-521-63503-9
[6] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[7] Wei T C and Goldbart P M 2003 Phys. Rev. A 68 042307
[8] Hofmann H F, Ide T, Kobayashi T and Furusawa A 2000 Phys. Rev. A 62 062304
[9] Madsen L B and M {\o}lmer K 2006 Phys. Rev. A 73 032342
[10] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. ReV. Lett. 96 140604
[11] Gorin T, Prosen T, Seligman T H et al 2006 Phys. Rept. 435 33
[12] Chen S, Wang L, Hao Y and Wang Y 2008 Phys. Rev. A 77 032111
[13] Chen S, Wang L, Gu S J and Wang Y 2007 Phys. Rev. E 76 061108
[14] Paunkovic N, Sacramento P D, Nogueira, Vieira V R and Dugaev V K 2008 Phys. Rev. A 77 052302
[15] You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101
[16] Zhang W M, Feng D X and Gilmore R 1990 Rev. Mod. Phys. 62 867
[17] Perelomov A M 1972 Commun. Math. Phys. 26 222
[18] Perelomov A M 1977 Phys. Usp. 20 703
[19] Gu S J arXiv: quant-ph/0811.3127v1
[20] Khan A and Pieri P 2009 Phys. Rev. A 80 012303
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 050304
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 050304
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 050304
[4] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 050304
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 050304
[6] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 050304
[7] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 050304
[8] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 050304
[9] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 050304
[10] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 050304
[11] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 050304
[12] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 050304
[13] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 050304
[14] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 050304
[15] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 050304
Viewed
Full text


Abstract