Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050303    DOI: 10.1088/0256-307X/27/5/050303
GENERAL |
Evolutionarily Stable Strategies in Quantum Hawk-Dove Game
Ahmad Nawaz1, A. H. Toor2
1National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan 2Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
Cite this article:   
Ahmad Nawaz, A. H. Toor 2010 Chin. Phys. Lett. 27 050303
Download: PDF(256KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We quantize the Hawk-Dove game by using the most general form of a pure initial state to investigate the existence of pure and mixed evolutionarily stable strategies (ESS). An example is considered to draw a comparison between the classical and quantum version of the game. Our choice of the most general initial quantum state enables us to make the game symmetric or asymmetric. We show that for a particular set of game parameters where there exists only mixed ESS in the classical version of the game, quantization allows even a pure strategy to be an ESS for the symmetric game in addition to mixed ESS. On the other hand only pure strategy ESS can exist for the asymmetric quantum version of the Hawk-Dove game.
Keywords: 03.65.-w      03.65.Ud      02.50.Le     
Received: 27 July 2009      Published: 23 April 2010
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050303       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmad Nawaz
A. H. Toor
[1] Smith M J and Price G R 1973 Nature 15 246
[2] Meyer D 1999 Phys. Rev. Lett. 82 1052
[3] Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077
[4] Marinatto L and Weber T 2000 Phys. Lett. A 272 291
[5] Iqbal A and Toor A H 2001 Phys. Lett. A 280 249
[6] Iqbal A and Toor A H 2001 Phys. Lett. A 2864 245
[7] Iqbal A and Abbott D 2009 Phys. Lett. A 373 2537
[8] Evolution in knockout conflicts A report by Broom M, Center for Statistics and Stochastic Modeling, School of Mathematical Sciences, University of Sussex, UK, 17 September 1997
[9] Van der Laan G 1998 De Economist 146 59
[10] Game theory A report by Prestwich K, Department of Biology college of Holly Cross, Worcester MA, USA 01610, 1999
[11] Iqbal A and Toor A H 2002 Phys. Rev. A 65 022306
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 050303
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 050303
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 050303
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 050303
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 050303
[6] ZHANG Feng-Li,ZHANG Mei**. Emergence and Decline of Scientific Paradigms in a Two-Group System[J]. Chin. Phys. Lett., 2012, 29(4): 050303
[7] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 050303
[8] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 050303
[9] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 050303
[10] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 050303
[11] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 050303
[12] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 050303
[13] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 050303
[14] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 050303
[15] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 050303
Viewed
Full text


Abstract