FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials |
DONG Xi-Jie1,2, HU Yi-Fan2, WU Yu-Ying1, ZHAO Jun3, WAN Zhen-Zhu4 |
1Wuhan High Magnetic Field Center, Huazhong University ofScience and Technology, Wuhan 4300742School of Physics, Huazhong University of Science and Technology,Wuhan 430074375310 Army, 25 Zhongnan Road, Wuhan 4300714School of Mathematics~and Physics, China University of Geosciences,Wuhan, 430074 |
|
Cite this article: |
DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying et al 2010 Chin. Phys. Lett. 27 044401 |
|
|
Abstract We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.
|
Keywords:
44.30.+v
78.55.Mb
05.45.Df
|
|
Received: 26 November 2009
Published: 27 March 2010
|
|
|
|
|
|
[1] Endo K and Tatsumi T 1996 Appl. Phys. Lett. 68 2864 [2] Mor Y S, Chang T C, Liu P T, Tsai T M, Chen C W, Yan S T, Chu C J, Wu W F, Pan F M, Lur W and Sze S M 2002 J. Vac. Sci. Technol. B 20 1334 [3] Hu Y F, Sun J N and Gidley D W 2005 Chin. Phys. Lett. 22 1488 [4] Maier G 2001 Prog. Polym. Sci. 26 3 [5] Maex K, Baklanov M R, Shamiryan D, Iacopi F, Brongersma S H and Yanovitskaya Z S 2003 J. Appl. Phys. 93 8793 [6] Yang S, Mirau P A, Pai C S, Nalamasu O, Reichmanis E, Pai J C, Obeng Y S, Seputro J, Lin E K, Lee H J, Sun J and Gidley D W 2002 Chem. Mater. 14 369 [7] Yang S, Mirau P, Pai C S, Nalamasu O, Reichmanis E, Lin E K, Lee H J, Gidley D W, Sun J 2001 Chem. Mater. 13 2762 [8] Nguyen C V et al 1999 Chem. Mater. 11 3080 [9] Hu C, Morgen M, Ho P S, Jain A, Gill W N, Plawsky J L and Wayner P C 2000 Appl. Phys. Lett. 77 145 [10] Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325 [11] Young I M and Crawford J W 1991 J. Soil Sci. 42 187 [12] Smidt J M and Monro D M 1998 Fractals 6 401 [13] Yu B M and Li J H 2001 Fractals 9 365 [14] Thovert J F, Wary F and Adler P M 1990 J. Appl. Phys. 68 3872 [15] Adler P M 1996 J. Hydrology 187 195 [16] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chin. Phys. Lett . 27 024705 [17] Bruggeman D A G 1935 Ann. Phys. (Leipzig) 24 634 [18] Carson J K, Lovatt S J, Tanner D J and Cleland A C 2005 Int. J. Heat Mass Transfer 48 2150 [19] Tang Y N, Yu B M, Hu Y F, Cai J C, Feng Y J and Xu P 2007 J. Phys. D 40 5377 [20] Mayama H and Tsujii K 2006 J. chem. Phys. 125 124706 [21] Stoer J and Bulirsch R 2002 Introduction to Numerical Analysis (New York: Springer) p 752 [22] Ramos T, Roderick K, Maskara A, Smith D M 1997 Materials Research Society Symposium Proceedings 443 91 [23] Hoinkis E, Rohl-kuhn B 2005 Langmuir 21 7366 [24] Liu J J, Gan D W, Hu C, Kiene M, Ho P S, Volksen W, Miller R D 2002 Appl. Phys. Lett. 81 4180 [25] Smaihi M, Jermoumi T and Marignan J 1995 Chem. Mater. 7 2293
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|