Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 038901    DOI: 10.1088/0256-307X/27/3/038901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Scale-free Networks with Self-Similarity Degree Exponents
Guo Jin-Li
Business School, University of Shanghai for Science and Technology, Shanghai 200093
Cite this article:   
Guo Jin-Li 2010 Chin. Phys. Lett. 27 038901
Download: PDF(305KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ravasz et al. structured a deterministic model of a geometrically growing network to describe metabolic networks. Inspired by the model of Ravasz et al., a random model of a geometrically growing network is proposed. It is a model of copying nodes continuously and can better describe metabolic networks than the model of Ravasz et al. Analysis shows that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the analysis of the model and the simulation process is beyond computing power owing to its geometric growth mechanism. The model can be better analyzed by the Poisson process. Results show that the model is scale-free with a self-similarity degree exponent, which is dependent on the common ratio of the growth process and similar to that of fractal networks.
Keywords: 89.75.Fb      89.75.Hc     
Received: 20 May 2009      Published: 09 March 2010
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/038901       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/038901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo Jin-Li
[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[3] Newman M E J 2003 SIAM Rev. 45 167
[4] Barabasi A L and Albert R 1999 Science 286 509
[5] Zou Z Y, Mao B H, Hao H M, Gao J Z and Yang J J 2009 Chin. Phys. Lett. 26 110502
[6] Yang H X, Wang B H, Liu J G, Han X P and Zhou T 2008 Chin. Phys. Lett. 25 2718
[7] Guo J L 2007 Chin. Phys. 16 1239
[8] Shi D H, Zhu X S and Liu L M 2007 Physica A 381 515
[9] Zhou T, Yan G and Wang B H. 2005 Phy. Rev. E 71 046141
[10] Barab\'{asi A L, Ravasz E and Vicsek T 2001 Physica A 299 559
[11] Dorogovtsev S N, Goltsev AV and Mendes J F F 2002 Phys. Rev. E 65 066122
[12] Ravasz E and Barab\'{asi A L 2003 Phy. Rev. E 67 026112
[13] Ravasz E, Somera A L, Mongru D A, Oltvai Z N and Barab\'{asi A L 2002 Science 276 1551
[14] Andrade J S, Herrmann H J, Andrade R F S and da Silva L R 2005 Phys. Rev. Lett. 94 018702
[15] Doye J P K and Massen C P 2005 Phys. Rev. E 71 016128
[16] Gu Z M, Zhou T, Wang B H, Yan G, Zhu C P and Fu Z Q 2006 Dyn. Contin. Discrete Impuls. Syst. B 13 505
[17] Wang L N and Guo J L 2008 J. University of Shanghai for Science and Technology 30 259 (in Chinese)
[18] Li J, Wang B H, Jiang P Q, Zhou T and Wang W X 2006 Acta Phys. Sin. 55 3695 (in Chinese)
[19] Hase M O and Mendes J F F. 2008 J. Stat. Mech. 2008 P12002
[20] Song C, Havlin S and Makse H. 2006 Nature Phys. 2 275
[21] Andrade J S, Herrmann H J, Andrade R F S and da Silva L R 2009 Phys. Rev. Lett. 102 079901
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 038901
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 038901
[11] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[14] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[15] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 038901
Viewed
Full text


Abstract