CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
AC Alternating-Current Loss Analyses of a Thin High-Temperature Superconducting Tube Carrying AC Transport Current in AC External Magnetic Field |
PI Wei1,2, WANG Yin-Shun1, DONG Jin2, CHEN Lei2 |
1School of Electrical and Electronic Engineering, Key Laboratory of HV and EMC Beijing, North China Electric Power University, Beijing 102206 2School of Mathematical and Physical Science, North China Electric Power University, Beijing 102206 |
|
Cite this article: |
PI Wei, WANG Yin-Shun, DONG Jin et al 2010 Chin. Phys. Lett. 27 037401 |
|
|
Abstract Numerical simulations on the AC loss characteristics in a thin high-temperature superconducting (HTS) tube are presented. Geometry of the HTS conductor is modeled as a tube with negligible thickness, and assumed to carry a transport current with the same phase as an AC externally applied magnetic field perpendicular to the axis. Based on the classical theory of AC loss with the Bean critical current model, the distribution of critical current density jc and AC loss Q are obtained by means of numerical analysis. The results are in very good agreement with experiments. A double-peak profile is observed in the curve of the critical current density distribution along the azimuth angle. This numerical simulation method is suitable for a thin HTS tube, which may be applicable on a thin tube configuration consisting of coated superconductors.
|
Keywords:
74.25.Ha
74.70.-b
74.78.Bz
74.25.Fy
|
|
Received: 28 August 2009
Published: 09 March 2010
|
|
PACS: |
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.78.Bz
|
|
|
74.25.Fy
|
|
|
|
|
|
[1] Chen G F, Li Z, Li G et al 2008 Chin. Phys. Lett. 25 3403 [2] Ren Z A {et al 2008 Chin. Phys. Lett. 25 2215 [3] Ma Y W, Gao Z S {et al 2009 Chin. Phys. Lett. 26 037401 [4] Furuse M et al 2003 Physica C 386 474 [5] Lin Y B, Lin L Z et al 2001 IEEE Trans. Appl. Supercond. 11 2371 [6] Funaki K, Iwakuma M et al 1999 Cryogenics 38 211 [7] Schwenerly, McConnell S W, Demko B W et al 1999 IEEE Trans. Appl. Supercond. 9 680 [8] Zueger H 1998 Cryogenics 38 1169 [9] Hiroyuki H et al 2004 Supercond. Sci. Technol. 17 276 [10] Elschner S, Breuer F, Noe M, Rettelbach T, Walter H and Bock J 2003 IEEE Trans. Appl. Supercond. 13 1980 [11] Paul N B et al 2005 Cryogenics 45 670 [12] Bean C P 1964 Rev. Mod. Phys. 36 31 [13] Norris W T 1970 J. Phys. D 3 489 [14] Schonborg N 2001 J. Appl. Phys. 90 2930 [15] Magnusson N 2001 Physica C 349 225 [16] Ashworth S P et al 2000 J. Appl. Phys. 88 2718 [17] Duckworth R C, Gouge M J, Caughman J et al 2005 IEEE Trans. Appl. Supercond. 15 1578 [18] Ma Y H, Li Z Y, Ryu K, Choi S, Park K B, Oh I S, Song H J, Cha G 2007 IEEE Trans. Appl. Supercond. 17 3140 [19] Svetlomir S et al 2003 Physica C 384 19 [20] Grilli F and Sj\"ostr\"om M 2004 Supercond. Sci. Techol. 17 409 [21] Svetlomir S et al 2005 Supercond. Sci. Techol. 18 1300 [22] Bruno D et al 2008 IEEE Trans. Appl. Supercond. 18 1717 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|