FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Compact Wavelength Division Multiplexer Based on Microstrip Resonator Containing Effective Zero-Index Media |
LI Yun-Hui, CAI Zhe, SUN Yong, HE Li, JIANG Hai-Tao |
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092 Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 |
|
Cite this article: |
LI Yun-Hui, CAI Zhe, SUN Yong et al 2010 Chin. Phys. Lett. 27 034208 |
|
|
Abstract A compact wavelength division multiplexer (WDM) based on a microstrip resonator containing effective zero-index media is proposed. Both numerical simulations and microwave experiments demonstrate the crosstalk suppression phenomenon in this WDM. By properly adjusting the values of lumped elements, it is convenient to achieve crosstalk suppression over 10dB. Therefore, this compact WDM is promising for applications in modern microwave communication systems for its compact device volume and unique capability to suppress the crosstalk between WDM channels.
|
Keywords:
42.70.Qs
41.20.Jb
|
|
Received: 21 October 2009
Published: 09 March 2010
|
|
PACS: |
42.70.Qs
|
(Photonic bandgap materials)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
|
|
[1] Bayindir M and Ozbay E 2002 Appl. Phys. Lett. 81 4514 [2] Jin C J, Han S Z, Meng X D, Cheng B Y and Zhang D Z 2002 J. Appl. Phys. 91 4771 [3] Viasnoff-Schwoob E, Weisbuch C, Benisty H, Cuisin C, Derouin E, Drisse O, Duan G H, Legouezigou L, Legouezigou O, Pommereau F, Golka S, Heidrich H, Hensel H J and Janiak K 2005 Appl. Phys. Lett. 86 101107 [4] Li Y H, Jiang H T, He L, Li. H Q, Zhang Y W and Chen H 2006 Appl. Phys. Lett. 88 081106 [5] Matsumoto T, Asatsuma T and Baba T 2007 Appl. Phys. Lett. 91 091117 [6] Muldarisnur A, Soehianie A, Iskandar A and Tjia M O 2008 J. Appl. Phys. 103 123110 [7] Ikeda K, Nezhad M and Fainman Y 2008 Appl. Phys. Lett. 92 201111 [8] Liu R J, Li Z Y, Feng Z F, Cheng B Y and Zhang D Z 2008 J. Appl. Phys. 103 094514 [9] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [10] Eleftheriades G V, Iyer A K and Kremer P C 2002 IEEE Trans. Microwave Theor. Tech. 50 2702 [11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977 [12] Shen Y F, Xu C, Tang Y F, Liu X H, Zi J and Chen H 2006 Chin. Phys. Lett. 23 1600 [13] Grbic A and Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403 [14] Garcia de Abajo F J, Gomez-Santos G, Blanco L A, Borisov A G and Shabanov S V 2005 Phys. Rev. Lett. 95 067403 [15] Wang J F, Qu S B, Xu Z, Zhang J Q, Ma H, Yang Y M and Gu C 2009 Chin. Phys. Lett. 26 084103 [16] Alu A and Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558 [17] Zhou L, Li H Q, Qin Y Q, Wei Z Y and Chan C T 2005 Appl. Phys. Lett. 86 101101 [18] Edwards B, Alu A, Young M E, Silveirinha M and Engheta N 2008 Phys. Rev. Lett. 100 033903 [19] Sanada A, Caloz C and Itoh T 2003 Proc. Asia-Pacific Microwave Conf. Seoul, Korea 3 1588 [20] Lai A, Caloz C and Itoh T 2004 IEEE Microwave Mag. 5 34 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|