Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 027302    DOI: 10.1088/0256-307X/27/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots
SHAO Jia-Feng1, A. G. U. Perera2, P. V. V. Jayaweera2, HE De-Yan1
1School of Physics Science and Technology, Lanzhou University, Lanzhou 7300002Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
Cite this article:   
SHAO Jia-Feng, A. G. U. Perera, P. V. V. Jayaweera et al  2010 Chin. Phys. Lett. 27 027302
Download: PDF(466KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A low-cost photoconductive dual-band detector was prepared using a nanoporous ZnO film sensitized by PbS quantum dots (QDs). At room temperature the device shows a UV response in the wavelength range of 200-400 nm with a 370 nm peak responsivity of 4.0×105 V/W and a vis-NIR response from 500 to 1400 nm with a 700 nm peak responsivity of 5.4×105 V/W. By increasing the size of the PbS QD, the response can be extended up to 2.9 μm. It is suggested that the UV response is a result of interband absorption of UV radiation by ZnO and the IR response comes from the absorption of PbS QDs.
Keywords: 73.21.La      73.22.-f      73.63.Bd      73.25.+i     
Received: 23 July 2009      Published: 08 February 2010
PACS:  73.21.La (Quantum dots)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.Bd (Nanocrystalline materials)  
  73.25.+i (Surface conductivity and carrier phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/027302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/027302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHAO Jia-Feng
A. G. U. Perera
P. V. V. Jayaweera
HE De-Yan
[1] Liu H C, Song C Y, Shen A et al 2000 Appl. Phys. Lett. 77 2437
[2] Chakrabarti S, Su X H, Bhattacharya P et al 2005 IEEE Photon Technol. Lett. 17 178
[3] Krishna S, Raghavan S, Winckel G et al 2003 Appl. Phys. Lett. 82 2574
[4] Li J, Choi K K and Tsui D C 2005 Appl. Phys. Lett. 86 211114
[5] Ranga C J, Ariyawansa G, Dietz N et al 2008 Opt. Lett. 33 2422
[6] Ariyawansa G, Rinzan M B M, Alevli M et al 2006 Appl. Phys. Lett. 89 091113
[7] Vogel R, Hoyer P and Weller H 1994 J. Phys. Chem. 98 3183
[8] Wang Y, Suna A, Mahler W et al 1987 J. Chem. Phys. 87 7315
[9] Hoyer P and Konenkamp R 1995 Appl. Phys. Lett. 66 349
[10] Moon T H, Jeong M C, Lee W et al 2005 Appl. Surf. Sci. 240 280
[11] Black K, Jones A C, Chalker P R et al 2008 J. Cryst. Growth 310 1010
[12] Xu Z Q, Deng H, Xie J et al 2006 Appl. Surf. Sci. 253 476
[13] Nosaka Y 1991 J. Phys. Chem. 95 5054
[14] Konstantatos G, Clifford J, Levina L et al 2007 Nature Photon. 1 531
Related articles from Frontiers Journals
[1] ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method[J]. Chin. Phys. Lett., 2012, 29(6): 027302
[2] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 027302
[3] ZHAO Xiang-Fu**, HAN Ping, ZHANG Rong, ZHENG You-Dou . Influence of Fluorine on the Conductivity and Oxidation of Silicon Nanomembranes after Hydrofluoric Acid Treatment[J]. Chin. Phys. Lett., 2011, 28(8): 027302
[4] WANG Yong-Juan **, CHENG Jie, YUE Xian-Fang . Electronic Properties of the N2C4 Cluster of DNA[J]. Chin. Phys. Lett., 2011, 28(8): 027302
[5] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 027302
[6] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 027302
[7] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 027302
[8] LIU Yu**, CHENG Fang . Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2011, 28(6): 027302
[9] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 027302
[10] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 027302
[11] OUYANG Fang-Ping, **, CHEN Li-Jian, XIAO Jin, ZHANG Hua . Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study[J]. Chin. Phys. Lett., 2011, 28(4): 027302
[12] P. Nalini, A. John Peter** . Energy Gap Dependence on Mn Content in a Diluted Magnetic Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(4): 027302
[13] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 027302
[14] ZHOU Xiao-Hao**, CHEN Ping-Ping, CHEN Xiao-Shuang, LU Wei . Temperature-Dependent Optical Properties of InAs/GaAs Self-Assembled Quantum Dots: Spectroscopic Measurements and an Eight-Band Study[J]. Chin. Phys. Lett., 2011, 28(11): 027302
[15] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 027302
Viewed
Full text


Abstract