Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020507    DOI: 10.1088/0256-307X/27/2/020507
GENERAL |
Spectrum Analysis and Circuit Implementation of a New 3D Chaotic System with Novel Chaotic Attractors
DONG Gao-Gao1, ZHENG Song1, TIAN Li-Xin1, DU Rui-Jin1,2
1Research Center for Nonlinear Science, Jiangsu University, Zhenjiang 2120132College of Mathematics and Computer Science, Chongqing Normal University, Chongqing 401331
Cite this article:   
DONG Gao-Gao, ZHENG Song, TIAN Li-Xin et al  2010 Chin. Phys. Lett. 27 020507
Download: PDF(2078KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The new autonomous system with only three equilibrium points is introduced. This system does not belong to the generalized Lorenz systems. The novel attractors are observed over a large range of parameters, which have rarely been reported in previous work. As an important component in chaotic signal generators, a physical circuit has been designed. The experimental results are in agreement with numerical simulations. More significantly, spectral analysis shows that the system has an extremely broad frequency spectral bandwidth in 0-131.6 Hz, without investigating any possible electronic techniques, which is more desirable for secure communications.
Keywords: 05.45.Ac      05.45.Vx      05.45.Gg     
Received: 19 October 2009      Published: 08 February 2010
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Vx (Communication using chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020507       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Gao-Gao
ZHENG Song
TIAN Li-Xin
DU Rui-Jin
[1] Chen G R and Dong X N 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific) chap 11 p 537
[2] Chen G R and L\"{u J H 2003 Dynamics of the Lorenz Systems Family: Analysis, Control and Synchronization (Beijing: Science Press) (in Chinese)
[3] Chua L O and Roska T 1993 IEEE Trans. Circuits Syst. I 40 147
[4] Suykens J A K and Vandewalle J 1993 IEEE Trans. Circuits Syst. I 40 861
[5] Dong G G, Du R J, Tian L X and Jia Q 2009 Phys. Lett. A 373 3838
[6] Song Z, Dong G G and Bi Q S 2009 Appl. Math. Comput. 215 3192
[7] L\"{u J H, Chen G R and Yu X 2004 IEEE Trans. Circuits Syst. I 51 2476
[8] Zhong G 1994 IEEE Trans. Circuits Syst. I 41 934
[9] Liu X 2009 Chin. Phys. Lett. 9 504
[10] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[11] Dong G G, Zheng S, Tian L X, Du R J, Sun M and Shi Z Y 2009 Phys. Lett. A 373 4227
[12] Dong G G and Tian L X 2008 Phys. Lett. A 372 4241
[13] Qi G Y and Chen G R 2006 Phys. Lett. A 352 386
[14] Wang G, Qiu S, Li H, Li C and Zhang Y 2006 Chin. Phys. 15 2872
[15] L\"{u J H, Chen G R and Yu Y 2002 Chin. Phys. Lett. 19 1260
[16] Munmuangsaen B and Srisuchinwong B 2009 Phys. Lett. A 373 4038
[17] Bao B C and Liu Z 2008 Chin. Phys. Lett. 25 2396
[18] Zhao L, Liao X F, Xiang T and Xiao Di 2009 Chin. Phys. Lett. 26 060502
[19] Qian Z, Chen Z and Yuan Z 2008 Chin. Phys. Lett. 25 3169
[20] L\"{u J H, Chen G R and Cheng D 2004 Int. J. Bifur. Chaos 14 1507
[21] Qi G Y and Chen G R 2006 Int. J. Bifur. Chaos 16 859
[22] Qian Z, Chen Z Q and Yuan Z Z 2008 Chin. Phys. Lett. 25 3169
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 020507
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020507
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020507
[4] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 020507
[5] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 020507
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 020507
[7] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 020507
[8] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 020507
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 020507
[10] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 020507
[11] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 020507
[12] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 020507
[13] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 020507
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 020507
[15] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 020507
Viewed
Full text


Abstract