Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020505    DOI: 10.1088/0256-307X/27/2/020505
GENERAL |
Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice

XU Quan1,2, TIAN Qiang2

1Department of Physics, Daqing Normal University, Daqing 1637122Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
XU Quan, TIAN Qiang 2010 Chin. Phys. Lett. 27 020505
Download: PDF(457KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the features of a single q-breather (SQB) in a Fermi-Pasta-Ulam lattice by the numerical method, and obtain that the stability of SQB correlates to coupling constant K and nonlinear parameter β. No matter whether K or β increases, the periodic SQB can be transformed into a quasiperiodic SQB or a chaotic SQB. We also obtain the conditions of excitation of periodic, quasiperiodic and chaotic SQBs.
Keywords: 05.45.Xt      02.30.Jr      63.20.Pw      63.20.Ry     
Received: 21 October 2009      Published: 08 February 2010
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Jr (Partial differential equations)  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020505       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Quan
TIAN Qiang
[1] Fermi E, Pasta J and Ulam S 1955 Los Alamos Report La-1940
[2] Mackay R S and Aubry S 1994 Nonlinearity 7 1623
[3] Takeno S, Kisoda K and Sievers A J 1988 Prog. Theor. Phys. Suppl. 94 242
[4] Bickham S R, Kiselev S A and Sievers A J 1993 Phys. Rev. B 47 14206
[5] Cretegry T, Livi R and Spicci M 1998 Physica D 119 88
[6] James G and Noble P 2004 Physica D 196 124
[7] Hornguist M, Lennholm E and Basu C 2000 Physica D 136 88
[8] Maniadis P, Zolotaryuk A V and Tsironis G P 2003 Phys. Rev. E. 67 046612
[9] James G and Kastner M 2007 Nonlinearity 20 631
[10] Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E. 61 2471
[11] Gershgorin B, Lvov Y V and Cai D 2005 Phys. Rev. Lett. 95 264302
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[3] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 020505
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 020505
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 020505
[10] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 020505
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[12] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[13] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020505
[14] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020505
[15] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 020505
Viewed
Full text


Abstract