CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
First-Principles Based Model of Spin-state Phase Transition |
WANG Xue-Li, WANG Chuan-Hui, TIAN Zhao-Ming, YIN Shi-Yan, YUAN Song-Liu
|
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 |
|
Cite this article: |
WANG Xue-Li, WANG Chuan-Hui, TIAN Zhao-Ming et al 2010 Chin. Phys. Lett. 27 107101 |
|
|
Abstract The nature of spin-state phase transition is investigated with [Fe(C4H4N2)\{Pt(CN)4\]} that is a novel 3D Hofmann-like compound. The bistability of this system is obtained by the first-principles calculation. It is demonstrated that thermal expansion is the intrinsic force involved in spin-state transition. Based on these results, we suggest a thermal exciting bistable model of spin-state transition with a temperature dependent crystal-field splitting (CFS). Experimental evidence of spin-state phase transition coincides with our theoretical model. This model approaches something fundamental in the mechanism leading to the transition, and it is important in developing new and practical controllable quantum devices.
|
Keywords:
71.15.Nc
82.20.Db
75.30.Kz
|
|
Received: 04 February 2010
Published: 26 September 2010
|
|
PACS: |
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
82.20.Db
|
(Transition state theory and statistical theories of rate constants)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
|
|
|
[1] Cambi L and Szego L 1931 Ber. Dtsch. Chim. Ges. 64 2591
[2] Kahn O and Jay Martinez C 1998 Science 279 44
[3] Real J A et al 1995 Science 268 265
[4] Sato O, Tao J and Zhang Y Z 2007 Angew. Chem. Int. Ed. 46 2152
[5] Goodenough J B 1967 Phys. Rev. 155 932
[6] Podlesnyak A et al 2006 Phys. Rev. Lett. 97 247208
[7] Knížek K et al 2006 J. Phys. Condens. Matter 18 3285
[8] Slichter C P and Drickamer H G 1972 J. Chem. Phys. 56 2142
[9] Zobel C et al 2002 Phys. Rev. B 66 020402
[10] Chesnut D B 1964 J. Chem. Phys. 40 405
[11] Kitazawa T et al 1996 J. Mater. Chem. 6 119
[12] Niel V et al 2001 Inorg. Chem. 40 3838
[13] Bonhommeau S et al 2005 Angew. Chem. 117 4137
[14] Cobo S, Molnár G, Real J A and Bousseksou A 2006 Angew. Chem. 118 5918
[15] Molnár G et al 2002 J. Phys. Chem. B 106 9701
[16] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2007 WIEN2k an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties , revised edition WIEN2k_08.1 (Release14/12/2007) ISBN 3-9501031-1-2 (Austria)
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[19] Ravindran P et al 2002 J. Appl. Phys. 91 291
[20] Kokalj A 2003 Comp. Mater. Sci. 28 155 (Code available from http://www.xcrysden.org/)
[21] Radaelli P G and Cheong SW 2002 Phys. Rev. B 66 094408
[22] Tayagaki T and Tanaka K 2001 Phys. Rev. Lett. 86 2886
[23] Gütlich P, Hauser A and Spiering H 1994 Angew. Chem. 106 2109
[24] Hauser A 1991 J. Chem. Phys. 94 2741
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|