Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 107102    DOI: 10.1088/0256-307X/27/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(111)
PANG Fei1,2, YIN Shu-Li1, LIANG Xue-Jin1, CHEN Dong-Min1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Renmin University of China, Beijing 100872
Cite this article:   
PANG Fei, YIN Shu-Li, LIANG Xue-Jin et al  2010 Chin. Phys. Lett. 27 107102
Download: PDF(670KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Anomalous transport properties of 40-nm-thick single-crystal Bi(111) films grown on Si(111)-7 substrates is investigated. The magnetoresistance (MR) of the films in perpendicular magnetic field shows a regular positive behavior in the temperature range 2−300 K, the MR in parallel field (B||) displays a series of interesting features. Specifically, we observe a change of the MR (B||) behavior from positive to negative when the temperature is below 10 K. In the range 10−170 K, the MR (B||) is negative in the investigated field of 9 T. When T>170 K, a positive MR appears in the high field regime. The low temperature MR(B||) behavior in the parallel field can be understood by the competition between weak localization and weak anti-localization (WAL). Furthermore, our results suggest that the WAL is dominated by the interface carriers.
Keywords: 71.70.Ej      72.15.Rn      73.20.-r     
Received: 21 May 2010      Published: 26 September 2010
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.20.-r (Electron states at surfaces and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/107102       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/107102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PANG Fei
YIN Shu-Li
LIANG Xue-Jin
CHEN Dong-Min
[1] Yang F Y et al 1999 Science 284 1335
[2] Tian M L, Wang J, Zhang Q, Kumar N, Mallouk T E and Chan M H W 2009 Nano Lett. 9 3196
[3] Koroteev Y M et al 2004 Phys. Rev. Lett. 93 046403
[4] Kim T K et al 2005 Phys. Rev. B 72 085440
[5] Hirahara T et al 2006 Phys. Rev. Lett. 97 146803
[6] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[7] Pascual J I et al 2004 Phys. Rev. Lett. 93 196802
[8] Zhang T et al 2009 Phys. Rev. Lett. 103 266803
Roushan P et al 2009 Nature 460 1106
[9] Chen J et al arXiv:1003.1534
Checkelsky J G, Hor Y S, Cava R J and Ong N P arXiv:1003.3883
[10] Studenikin S A, Coleridge P T, Ahmed N, Poole P J and Sachrajda A 2003 Phys. Rev. B 68 035317
[11] Koga T, Nitta J, Akazaki T and Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[12] Bergman G 1984 Phys. Rep. 107 1
[13] Altshuler B L, Khmel'nitzkii D, Larkin A I and Lee P A 1980 Phys. Rev. B 22 5142
[14] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[15] Chen G L, Han J, Hung T T, Datta S and Janes D B 1993 Phys. Rev. B 47 4084
[16] Lin J J and Bird J P 2002 J. Phys.: Condens. Matter 14 R501
[17] Chu H T, Henriksen P N and Alexander J 1988 Phys. Rev. B 37 3900
[18] Pang F et al 2010 Chin. Phys. B 19 087201
[19] Kohda M and Nitta J 2010 Phys. Rev. B 81 115118
[20] Komnik Y F, Andrievskii V V and Berkutov I B 2007 Low Temp. Phys. 33 79
Related articles from Frontiers Journals
[1] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains[J]. Chin. Phys. Lett., 2012, 29(2): 107102
[2] CHEN Shun-Sheng, YANG Chang-Ping, LUO Xiao-Jing, Bä, rner K., Medvedeva I. V.. Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode[J]. Chin. Phys. Lett., 2012, 29(2): 107102
[3] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 107102
[4] Samad Javidan* . Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(8): 107102
[5] OUYANG Sheng-De, QUAN Ya-Min, LIU Da-Yong, ZOU Liang-Jian** . A Comparative Investigation on the JT Effect in Triangular Compounds of NaMnO2, NaNiO2 and NaTiO2[J]. Chin. Phys. Lett., 2011, 28(6): 107102
[6] LIU Yu**, CHENG Fang . Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2011, 28(6): 107102
[7] SHI Yan-Li, MEI Feng, YU Ya-Fei, ZHANG Zhi-Ming** . Controlled Phase Gate Based on an Electron Floating on Helium[J]. Chin. Phys. Lett., 2011, 28(5): 107102
[8] ZHAO Wei**, DING Jian-Wen . Reproduced Giant Localization Length of Two-Side Surface Disordered Nanowires with Long-Range Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 107102
[9] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 107102
[10] LU Xiao-Hong, SUN Jiu-Xun, GUO Yang, ZHANG Da. Potential-Dependent Generalized Einstein Relation in Disordered Organic Semiconductors[J]. Chin. Phys. Lett., 2009, 26(8): 107102
[11] FENG Jun-Sheng, LIU Zheng. Spin-Orbit Splitting in Semiconductor Quantum Dots with a Two-Dimensional Ring Model[J]. Chin. Phys. Lett., 2009, 26(8): 107102
[12] AN Xia, FAN Chun-Hui, HUANG Ru, ZHANG Xing. Schottky Barrier Height Modulation of Nickel Germanide Schottky Diodes by the Germanidation-Induced Dopant Segregation Technique[J]. Chin. Phys. Lett., 2009, 26(8): 107102
[13] HAO Ya-Fei, CHEN Yong-Hai, HAO Guo-Dong, WANG Zhan-Guo. Electric Field Control of Interface Related Spin Splitting in Step Quantum Wells[J]. Chin. Phys. Lett., 2009, 26(7): 107102
[14] SHEN Ka. A Peak in Density Dependence of Electron Spin Relaxation Time in n-Type Bulk GaAs in the Metallic Regime[J]. Chin. Phys. Lett., 2009, 26(6): 107102
[15] LIU Hai, LIU Jin-Song, LÜ, Jian-Tao, WANG Ke-Jia. Morphology Dependence of Power Spectra for Different Polarized States from Two-Dimensional Active Random Media[J]. Chin. Phys. Lett., 2009, 26(5): 107102
Viewed
Full text


Abstract