Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 103301    DOI: 10.1088/0256-307X/27/10/103301
ATOMIC AND MOLECULAR PHYSICS |
Vibrational Spectra of Distorted Structure Molecules by Using Lie Algebraic Techniques: an Application to Copper and Magnesium Octaethyl Porphyrin
Srinivasa Rao Karumuri
School of Sciences and Humanities, Sri Viveka Institute of Technology (SVIT), Madalavari Gudem, Nunna, Krihna District-521212, India
Cite this article:   
Srinivasa Rao Karumuri 2010 Chin. Phys. Lett. 27 103301
Download: PDF(394KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using a U(2) algebraic model the fundamental stretching vibrations of copper octaethyl porphyrin and magnesium octaethyl porphyrin are calculated for 24 vibrational bands. The locality parameter ξ confirms the highly local behavior of the stretching modes of these porphyrin molecules. The model Hamiltonian so constructed appears to describe the vibrational energy levels accurately.
Keywords: 33.20.Ea      02.20.Sv      03.65.Fd     
Received: 20 April 2010      Published: 26 September 2010
PACS:  33.20.Ea (Infrared spectra)  
  02.20.Sv (Lie algebras of Lie groups)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/103301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/103301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Srinivasa Rao Karumuri
[1] Levine R D et al 1979 Chem. Phys. Lett. 60 372
[2] Iachello F 1981 Chem. Phys. Lett. 78 581
[3] Iachello F and Levine R D 1982 J. Chem. Phys. 77 3046
[4] Roosmalen O S et al 1983 J. Chem. Phys. 79 2515
[5] Child M S et al 1982 Chem. Phys. Lett. 87 217
[6] Benjamin I et al 1983 Chem. Phys. Lett. 101 518
[7] Iachello F et al 1991 J. Mol. Spectrosc. 146 56
[8] Zheng Y and Ding S 1999 Phys. Lett. A 256 197
[9] Iachello F and Oss S 1990 J. Mol. Spectrosc. 142 85
[10] van Roosmalen O S et al 1984 J. Chem. Phys. 81 5986
[11] Pilva J 2000 J. Mol. Struct. 517-518 235
[12] Zheng Y and Ding S 2000 J. Mol. Spectrosc. 210 109
[13] Iachello F et al 1991 J. Mol. Spectrosc. 149 32
[14] Iachello F, Oss S and Viola L 1993 Mol. Phys. 78 545
[15] Iachello F, Oss S and Viola L 1993 Mol. Phys. 78 561
[16] Wang M et al 2002 Phys. Rev. A 66 022506
[17] Iachello F and Levine R D 1995 Algebraic Theory of Molecules (Oxford: Oxford University)
[18] Oss S 1996 Adv. Chem. Phys. 93 455
[19] Iachello F and Oss S 2002 Eur. Phys. J. D 19 307
[20] Sarkar N K et al 2006 Mol. Phys. 104 3051
[21] Sarkar N K et al 2008 Indian J. Phys. 82 767
[22] Sarkar N K et al 2008 Mol. Phys. 105 693
Sarkar N K et al 2009 Eur. Phys. J. D 53 163
[23] Choudhury J et al 2008 Indian J. Phys. 82 561
[24] Choudhury J et al 2008 Pramana J. Phys. 71 439
Choudhury J et al 2009 Chin. Phys. Lett. 26 020308
[25] Karumuri S R et al 2009 J. Environ. Res. Develop. 3 250
Karumuri S R et al 2009 Pramana J. Phys. 72 517
Karumuri S R et al 2008 Mol. Phys. 106 1733
Karumuri S R et al 2009 J. Mol. Spectrosc. 255 183
Karumuri S R et al 2009 Chin. Phys. Lett. 26 093301
Karumuri S R et al 2010 Pramana J. Phys. 74 57
[26] Karumuri S R et al 2010 J. Mol. Spectrosc. 259 86
[27] Iachello F and Oss S 1991 Phys. Rev. Lett. 66 2976
[28] Iachello F and Oss S 1991 Chem. Phys. Lett. 187 500
[29] Iachello F and Oss S 1992 J. Mol. Spectrosc. 153 225
[30] Iachello F and Oss S 1993 Chem. Phys. Lett. 205 285
[31] L Lubich and Oss S 1997 J. Chem. Phys. 106 5379
[32] T Marinkovic et al 2002 Phys. Chem. Commun. 5 66
[33] T Marinkovic et al 2003 Phys. Chem. Commun. 6 42
[34] Oss S 2006 J. Mol. Struct. 780-781 87
[35] Li X Y et al 1990 J. Phys. Chem. 94 47
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 103301
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 103301
[3] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 103301
[4] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 103301
[5] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 103301
[6] LIU Xiao-Dong, **, Hagihala Masato, ZHENG Xu-Guang, **, MENG Dong-Dong, GUO Qi-Xin . Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl[J]. Chin. Phys. Lett., 2011, 28(8): 103301
[7] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 103301
[8] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 103301
[9] JIANG Xiu-Lan, LI Dong-Fei, SUN Cheng-Lin, LI Zhan-Long, YANG Guang, ZHOU Mi, LI Zuo-Wei, **, GAO Shu-Qin . Relationship between Fermi Resonance and Solvent Effects[J]. Chin. Phys. Lett., 2011, 28(5): 103301
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 103301
[11] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 103301
[12] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 103301
[13] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 103301
[14] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 103301
[15] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 103301
Viewed
Full text


Abstract