ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Quasi-Classical Trajectory Study on Ar+H2+/D2+/T2+ Reactions |
LIU Hui-Rong, LIU Xin-Guo, SUN Hai-Zhu, ZHANG Qing-Gang
|
College of Physics and Electronics, Shandong Normal University, Jinan 250014 |
|
Cite this article: |
LIU Hui-Rong, LIU Xin-Guo, SUN Hai-Zhu et al 2010 Chin. Phys. Lett. 27 103101 |
|
|
Abstract In order to explore the isotope effect on stereodynamics, we investigate the trajectory calculations of Ar+H2+, Ar+D2+ and Ar+T2+ reactions on the ab initio potential energy surface constructed by us and calculate the distributions of product polarization P(θr), P(φr) and four generalized polarization−dependent differential cross-sections. The product rotational alignment parameters < 2(j'⋅k)> for the title reactions are compared and discussed with mass factors. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are presented. The results indicate that the stereodynamics properties of the title reactions are sensitive to the mass factor.
|
Keywords:
31.15.Ap
31.15.At
|
|
Received: 06 July 2010
Published: 26 September 2010
|
|
PACS: |
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
|
|
|
[1] Chu T S et al 2005 J. Chem. Phys. 122 244322
[2] Chu T S et al 2008 Phys. Chem. Chem. Phys. 10 2431
[3] Chu T S et al 2006 Int. Rev. Phys. Chem. 25 201
[4] Tanaka K et al 1981 J. Chem. Phys. 75 4941
[5] Campbell F M et al 1980 J. Phys. B 13 4257
[6] Bilotta R M et al 1980 J. Chem. Phys. 73 1637
[7] Bilotta R M et al 1980 Chem. Phys. Lett. 74 95
[8] Bilotta R M et al 1981 J. Chem. Phys. 74 1699
[9] Houle F A et al 1982 J. Chem. Phys. 77 748
[10] Houle F A et al 1981 Chem. Phys. Lett. 82 392
[11] Liao C L et al 1990 J. Chem. Phys. 93 4818
[12] Qian X et al 2003 J. Chem. Phys. 118 2455
[13] Kuntz P J et al 1972 J. Chem. Soc. Faraday Trans. 68 259
[14] Wu A A et al 1968 J. Chem. Phys. 48 727
[15] Bear M et al 1979 Phys. Rev. A 19 1559
[16] Fano U et al 1973 Rev. Mod. Phys. 45 553
[17] Case D E et al 1975 Mol. Phys. 30 1537
[18] Mcclell G M 1979 J. Phys. Chem. A 83 1445
[19] Barnwell J D et al 1983 J. Phys. Chem. A 87 2781
[20] Orr-Ewing A J et al 1994 Annu. Rev. Phys. Chem. 45 315
[21] Wang M L et al 1998 J. Phys. Chem. A 102 10204
[22] Wang M L et al 1998 J. Chem. Phys. 109 5446
[23] Li R J et al 1994 Chem. Phys. Lett. 220 281
[24] Zhang W Q et al 2009 J. Phys. Chem. A 113 4192
[25] Duan Z Z et al 2008 Mol. Phys. 106 2725
[26] Chapman S 1985 J. Chem. Phys. 82 4033
[27] Kong H et al 2009 Chin. Phys. Lett. 26 053102-1
[28] Li X H et al 2009 Phys. Chem. Chem. Phys. 11 10438
[29] Zhu T et al 2010 Chin. Phys. Lett. 27 033102-1
[30] Chen M D et al 2002 Chem. Phys. Lett. 357 483
[31] Chen M D et al 2003 J. Chem. Phys. 118 4463
[32] Ju L P et al 2009 J. Comput. Chem. 30 305
[33] Zhang W Q et al 2010 Chem. Phys. 367 115
[34] Duan L H et al 2009 Mol. Phys. 107 2579
[35] Han K L et al 1996 J. Chem. Phys. 105 8699
[36] Zhang X et al 2006 Int. J. Quantum Chem. 106 1815
[37] Aguado A et al 1992 J. Chem. Phys. 96 1265
[38] Knowles P J et al 1985 Chem. Phys. Lett. 115 259
[39] Werner H J et al 1985 J. Chem. Phys. 82 5053
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|