CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Dynamics of Förster Energy Transfer in Pyridium Salt-Doped Thin Films |
XU Deng1, ZHUANG Xiao-Hong2 |
1Department of Electrical Engineering, Changzhou Institute of Mechatronic Technology, Changzhou 2131642Department of Humanities, Changzhou Institute of Mechatronic Technology, Changzhou 213164 |
|
Cite this article: |
XU Deng, ZHUANG Xiao-Hong 2009 Chin. Phys. Lett. 26 077806 |
|
|
Abstract Properties of photoluminescence and Förster energy transfer dynamics based on an organic pyridium salt trans-4-[p-(N-Hydroxyethyl-N-methylamino)Styryl]-N-methylpyridinium iodide (ASPI) and organic small molecule Alq3 in PMMA polymeric thin films are investigated by steady-state and time-resolved fluorescent spectra as well as theoretical calculation. The observation of reduced emission intensity and the fluorescent lifetime of Alq3 is demonstrated, while the ASPI emission gradually increases and is finally dominant in the PL spectra with increasing ASPI doping concentration. Such results show that there exists an efficient Förster energy transfer (FET) from Alq3 to ASPI due to the large spectral overlap between ASPI absorption and Alq3 emission. The difference between the theoretical FET efficiency and the experimental data is caused by the lower mobility of the Alq3 exciton in the MMA matrix.
|
Keywords:
78.66.-w
78.47.-p
42.70.-a
|
|
Received: 08 April 2009
Published: 02 July 2009
|
|
PACS: |
78.66.-w
|
(Optical properties of specific thin films)
|
|
78.47.-p
|
(Spectroscopy of solid state dynamics)
|
|
42.70.-a
|
(Optical materials)
|
|
|
|
|
[1] Samuel I D W and Turnbull G A 2007 Chem. Rev. 107 1272 [2] Schneider D, Rabe T, Riedl T, Dobbertin T, Kr\"{oger M,Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P,Gerhard A, St\"{ossel P, Vestweber H 2005 Adv. Mater. 17 31 [3] Vardeny Z V 2002 Nature 416 489 [4] Rose A, Zhu Z G, Madigan C F, Swager T M and Bulovic V2005 Nature 434 876 [5] Kozlov V G, Parthasarathy G, Burrows P E, Khalfin V B,Wang J, Chou S Y and Forrest S R 2000 IEEE J. QuantumElectron. 36 8 [6] Bulovic V, Kozlov V G, Khalfin V B and Forrest S R 1998 Science 279 553 [7] Lee T W, Park O O, Cho H N, Kim D Y and Kim Y C 2003 J. Appl. Phys. 93 1367 [8] Koschorreck M, Gehlhaar R, Lyssenko V G, Swoboda M,Hoffmann M and Leo K 2005 Appl. Phys. Lett. 87 181108 [9] Meier M, Mekis A, Dodabalapur A, Timko A, Slusher R E,Joannopoulos J D and Nalamasu O 1999 Appl. Phys. Lett. 74 7 [10] Gupta R, Stevenson M, Heeger A J 2002 J. Appl.Phys. 92 4874 [11] Dong Y, Zhao H, Song J F, Gao F B, Cheng C H, Chang Y C,Du G T, Yu M B and Lo G Q 2008 Appl. Phys. Lett. 92223309 [12] Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M,Becher E, Johannes H H, Kowalsky W, Weimann T, Wang J and Hinze P2004 Appl. Phys. Lett. 85 1886 [13] Mattoussi H, Murata H, Merritt C D, Lizumi Y, Kido J andKafafi Z H 1999 J. Appl. Phys. 86 2642 [14] Lu W, You H, Fang J F and Ma D G 2007 Appl. Opt. 46 2320 [15] Zhang D K and Ma D G 2007 Appl. Opt. 46 2996 [16] Xu D, Ye L H, Cui Y P, Xi J, Li L and Wang Q 2008 Act. Phys. Sin. 57 3267 [17] Xi J, Ye L H, Wang Q, Xu D, Lu C G., Hu G H and Cui Y P2009 Chin. Phys. Lett. 26 017803 [18] Xi J, Ye L H, Wang Q, Xu D and Cui Y P 2009 Appl.Phys. Lett. (submitted) [19] Zhao C F, He G S, Bhawalkar J D, Park C K and Prasad P N1995 Chem. Mater. 7 1979 [20] F\"{orster T 1959 Discuss. Faraday Soc. 27 7 [21] Berggren M, Dodabalapur A and Slusher R E 1997 Appl.Phys. Lett. 71 2230 [22] Andrew P and William L B 2000 Science 290 785 [23] Gong X, Lim S H, Ostrowski J C, Moses D, Bardeen C J andBazan G C 2004 J. Appl. Phys. 95 948 [24] Wu Y, Wu H R, Zhou Y C, Zhan Y Q, Zhou J, Ding X M andHou X Y 2006 Appl. Phys. Lett. 88 123512 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|