Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060305    DOI: 10.1088/0256-307X/26/6/060305
GENERAL |
Partial Hermitian Conjugate Separability Criteria for Pure Quantum States
ZHAO Xin1, WU Hua1, LI Yan-Song1, LONG Gui-Lu 1,2
1Key Laboratory for Atomic and Molecular NanoSciences and Department of Physics, Tsinghua University, Beijing 1000842National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084
Cite this article:   
ZHAO Xin, WU Hua, LI Yan-Song et al  2009 Chin. Phys. Lett. 26 060305
Download: PDF(211KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a criterion for the separability of quantum pure states using the concept of a partial Hermitian conjugate. It is equivalent to the usual positive partial transposition criteria, with a simple physical interpretation.
Keywords: 03.67.Hk      03.65.Ud      03.67.Dd     
Received: 07 March 2009      Published: 01 June 2009
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060305       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Xin
WU Hua
LI Yan-Song
LONG Gui-Lu
[1] Peres A 1993 Quantum Theory: Concepts and Methods(Dordrecht: Kluwer Academic)
[2] Ekert A and Knight P L 1995 J. Am. Phys. 63415
[3] Bell J S 1966 Rev. Mod. Phys. 38 447
[4] Werner R F 1989 Phys. Rev. A 40 4277
[5] Peres A 1996 Phys. Rev. Lett. 77 1413
[6] Zyczkowski K and Horodecki P 1998 Phys. Rev. A 58 883
[7] Horodecki M, Horodecki P and Horodecki R 1996 Phys.Lett. A 223 1
[8] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206
[9] Cerf N, Adami C and Gingrich R M 1999 Phys. Rev. A 60 893
[10] Albeverio S, Chen K and Fei S M 2003 Phys. Rev. A 68 062313
[11] Nielsen M A and Kempe 2001 J. Phys. Rev. Lett. 86 5184
[12] Rudolph O 2005 Quant. Inf. Proc. 4 219
[13] Chen K and Wu L A 2003 Quant. Inf. Comput. 3193
[14] Chen K and Wu L A 2002 Phys. Lett. A 306 14
[15] Horodecki R et al 2007 quant-ph/0702225
[16] Albeverio S, Fei S M and Goswami D 2001 Phys. Lett.A 286 91
[17] Ye M Y, Zhang Y S and Guo G C 2008 Sci. Chin. G 51 14
[18] Cao W C et al 2006 Sci. Chin. G 49 606
[19] Di Y M and Li L 2007 Sci. Chin. G 50 691
[20] Pan F, Liu G Y and Draayer J P 2006 Int. J. Mod.Phys. B 20 1333
[21] Zhou L, Song H S and Li C 2002 J. Opt. B: QuantumSemiclass. Opt. 4 425
[22] Ou Y C and Fan H 2007 Phys. Rev. A 76 022320
[23] Plenio M B and Virmani S 2007 Quant. Inf. Comp. 7 1
[24] Wang X H et al 2008 Front. Comput. Sci. Chin. 2 114
[25] Zhang Y S 2008 Chin. Phys. Lett. 25 3146
[26] Zou J H and Hu X M 2008 Chin. Phys. Lett. 253142
[27] Sun H Y, Huang X L and Yi X X 2009 Chin. Phys.Lett. 26 020305
[28] Wei D X et al 2004 Chin. Sci. Bull. 49 423
[29] Man Z X, Su F and Xia Y J 2008 Chin. Sci. Bull. 53 2410
[30] Ding S C and Jin Z 2007 Chin. Sci. Bull. 522161
[31] Riesz F and SzNagy B 1955 Functional Analysis (NewYork: Ungar)
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 060305
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 060305
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 060305
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 060305
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 060305
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 060305
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 060305
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 060305
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 060305
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 060305
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 060305
[12] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 060305
[13] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 060305
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 060305
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 060305
Viewed
Full text


Abstract