Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060306    DOI: 10.1088/0256-307X/26/6/060306
GENERAL |
A Lower Bound on Concurrence
LIU Li-Guo1,2, TIAN Cheng-Lin1, CHEN Ping-Xing1, YUAN Nai-Chang2
1Department of Physics, National University of Defense Technology, Changsha 4100732Institute of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073
Cite this article:   
LIU Li-Guo, TIAN Cheng-Lin, CHEN Ping-Xing et al  2009 Chin. Phys. Lett. 26 060306
Download: PDF(270KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively. Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
Keywords: 03.65.-w      03.67.Mn     
Received: 06 October 2008      Published: 01 June 2009
PACS:  03.65.-w (Quantum mechanics)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060306       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Li-Guo
TIAN Cheng-Lin
CHEN Ping-Xing
YUAN Nai-Chang
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Peres A 1996 Phys. Rev. Lett. 77 1413
[3] Horodecki M, Horodecki P and Horodecki R 1996 Phys.Lett. A 223 1
[4] Chen P X and Liang L M 2001 Phys. Rev. A 63052306
[5] Chen K and Wu L A 2003 Quantum Inf. Comput. 3193
[6] Rudolph O 2002 arXiv:0202121
[quant-ph]
[7] Terhal B 2000 Phys. Lett. A 271 319 T\'{oth G and G\"{uhne O 2005 Phys. Rev. Lett. 94 060501 Jafarizadeh M A, Rezaee M and Seyed Yagoobi S K A 2005 Phys. Rev. A 72 062106
[8] Hofmann H F and Takeuchi S 2003 Phys. Rev. A 68 032103
[9] Samuelsson S and Bj\"{ork G 2006 Phys. Rev. A 73 012319
[10] Khan I A and Howell J C 2004 Phys. Rev. A 70062320
[11] G\"{uhne O 2004 Phys. Rev. Lett. 92 117903 G\"{uhne O, Hyllus P, Gittsovich O and Eisert J 2007 Phys. Rev. Lett. 99 130504
[12] Plenio M B and Virmani S 2007 Quantum Inf. Comput. 7 1
[13] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[14] Uhlmann A 2000 Phys. Rev. A 62 032307
[15] Rungta P, Bu\u{zek V, Caves C M, Hillery M and Milburn GK 2001 Phys. Rev. A 64 042315
[16] Chen K, Albeverio S and Fei S M 2005 Phys. Rev.Lett. 95 040504
[17] de Vicente J I 2007 Phys. Rev. A 75 052320
[18] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Phys.Rev. A 76 012334
[19] Zhang C J, Zhang Y S, Zhang S and Guo G C 2008 Phys.Rev. A 77 060301(R)
[20] G\"{uhne O, Mechler M, T\'{oth G and Peter A 2006 Phys. Rev. A 74 010301
[21] Yu S X and Liu N L 2005 Phys. Rev. Lett. 95150504
[22] Gittsovich O, G\"{uhne O, Hyllus P and Eisert J 2008 Phys. Rev. A 78 052319
[23] Li M, Fei S M and Wang Z X 2008 J. Phys. A: Math.Theor. 41 202002
[24] Bennett C H et al 1999 Phys. Rev. Lett. 825385
[25] Horodecki P 1997 Phys. Lett. A 232 333
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 060306
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 060306
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060306
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 060306
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 060306
[6] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 060306
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060306
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 060306
[9] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 060306
[10] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 060306
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 060306
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 060306
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 060306
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 060306
[15] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 060306
Viewed
Full text


Abstract