Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 034702    DOI: 10.1088/0256-307X/26/3/034702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder
XIA Yong1, LU De-Tang2, LIU Yang3, XU You-Sheng1
1Institute of Condensed Matter Physics, Zhejiang Normal University, Jinhua 3210042Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 2300273Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Cite this article:   
XIA Yong, LU De-Tang, LIU Yang et al  2009 Chin. Phys. Lett. 26 034702
Download: PDF(508KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder. This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 3D effect of a cantilevered cylinder. To meet the accuracy of this method, the present calculation is carried out at a low Reynolds number Re=100, as well as to make the vibration obvious, we make the vibration strong enough. The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough, our early works show that the 2D vortex shedding would be locked up by vibration. Contrarily, this phenomenon would not appear in the present 3D case because of the end effect of the cantilevered cylinder.
Keywords: 47.32.-y      47.10.-g      47.11.-j     
Received: 19 September 2008      Published: 19 February 2009
PACS:  47.32.-y (Vortex dynamics; rotating fluids)  
  47.10.-g (General theory in fluid dynamics)  
  47.11.-j (Computational methods in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/034702       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/034702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Yong
LU De-Tang
LIU Yang
XU You-Sheng
[1] Bearman P W 1984 Ann. Rev. Fluid Mech. 16 195
[2] Blackburn H M and Henderson R D 1999 J. Fluid Mech. 385 255
[3] Bishop R E D and Hassan A Y 1984 Proc. R. Soc.London A 277 51
[4] Carberry J, Sheridan J and Rockwell D 2001 J. FluidsStruct. 15 523
[5] Chen S, Chen H, Martinez D O and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776
[6] d'Humi\'eres D 1992 Prog. Aeronaut. Astronaut. 159 450
[7] d'Humi\'eres D, Ginzburg I, Krafczyk M, Lallemand P andLuo L S 2002 Phil. Trans. R. Soc. London A 360 {437
[8] Feng Z G and Michaelides E E 2004 J. Comput. Phys. 195 602
[9] Feng Z G and Michaelides E E 2005 J. Comput. Phys. 202 20
[10] Griffin O M and Ramberg S E 1976 J. Fluid Mech. 73 257
[11] Griffin O M and Hall M S 1991 J. Fluids Engin. 113 526
[12] Lai M and Peskin C S 2000 J. Comput. Phys. 160 705
[13] Liu Y, So R M C and Cui Z X 2005 J. Fluids Struct. 20 589
[14] Liu Y 2007 Computers and Fluids doi: 10.1016/j.compfluid. 2007.07.020
[15] Meneghini J R and Bearman P W 1995 J. FluidsStruct. 9 435
[16] Ongoren A and Rockwell D 1988 J. Fluid Mech. 191 197
[17] Qian Y H and d'Humi\'eres D and Lallemand P 1992 Europhys. Lett. 17 479
[18] Shu C, Liu N and Chew Y T 2000 J. Comput. Phys. 226 1607
[19] So R M C, Liu Y, Cui Z X, Zhang C H and Wang X Q 2005 J. Fluids Struct. 20 {373
[20] Williamson C H K and Roshko A 1988 J. FluidsStruct. 2 {355
[21] Zhang M M, Zhou Y and Cheng L 2003 AIAA J. 411500
[22] Zhou Y, Wang Z J, So R M C and Wang T 2001 J. FluidMech. 443 197
Related articles from Frontiers Journals
[1] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 034702
[2] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 034702
[3] S. Nadeem, Noreen Sher Akbar. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis[J]. Chin. Phys. Lett., 2010, 27(6): 034702
[4] TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability[J]. Chin. Phys. Lett., 2010, 27(1): 034702
[5] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 034702
[6] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 034702
[7] LIU Ping, LOU Sen-Yue,. A (2+1)-Dimensional Displacement Shallow Water Wave System[J]. Chin. Phys. Lett., 2008, 25(9): 034702
[8] SONG Jun, SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation[J]. Chin. Phys. Lett., 2008, 25(5): 034702
[9] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 034702
[10] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 034702
[11] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 034702
[12] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 034702
[13] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 034702
[14] CHEN Yan-Yan, , YI Hou-Hui, LI Hua-Bing,. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation[J]. Chin. Phys. Lett., 2008, 25(1): 034702
[15] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 034702
Viewed
Full text


Abstract