Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 032103    DOI: 10.1088/0256-307X/26/3/032103
NUCLEAR PHYSICS |
Stability of Strutinsky Shell Correction Energy in Relativistic Mean Field Theory
NIU Yi-Fei1, LIANG Hao-Zhao1,2, MENG Jie1,3
1State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 1008712Institut de Physique Nucléaire, IN2P3-CNRS and Université Paris-Sud, F-91406 Orsay Cedex, France3Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
Cite this article:   
NIU Yi-Fei, LIANG Hao-Zhao, MENG Jie 2009 Chin. Phys. Lett. 26 032103
Download: PDF(325KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The single-particle spectrum obtained from the relativistic mean field (RMF) theory is used to extract the shell correction energy with the Strutinsky method. Considering the delicate balance between the plateau condition in the Strutinsky smoothing procedure and the convergence for the total binding energy, the proper space sizes used in solving the RMF equations are investigated in detail by taking 208Pb as an example. With the proper space sizes, almost the same shell correction energies are obtained by solving the RMF equations either on basis space or in coordinate space.
Keywords: 21.10.-k      21.10.Ma      21.10.Pc      21.60.Jz     
Received: 06 October 2008      Published: 19 February 2009
PACS:  21.10.-k (Properties of nuclei; nuclear energy levels)  
  21.10.Ma (Level density)  
  21.10.Pc (Single-particle levels and strength functions)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/032103       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/032103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIU Yi-Fei
LIANG Hao-Zhao
MENG Jie
[1] Strutinsky V M 1967 Nucl. Phys. A 95 420
[2] Strutinsky V M 1968 Nucl. Phys. A 122 1
[3] Moller P et al 1995 At. Data. Nucl. Data Tables 59 185
[4] Bolsterli M et al 1972 Phys. Rev. C 5 1050
[5] Brack M and Pauli H C 1973 Nucl. Phys. A 207401
[6] Ross C K and Bhaduri R K 1972 Nucl. Phys. A 188 566
[7] Nazarewicz W, Werner T R and Dobaczewski J 1994 Phys. Rev. C 50 2860
[8] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1
[9] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
[10] Vretenar D et al 2005 Phys. Rep. 409 101
[11] Meng J et al 2006 Prog. Part. Nucl. Phys. 57470
[12] Zhang W et al 2003 Chin. Phys. Lett. 20 1694
[13] Liu Z H and Bao J D 2006 Phys. Rev. C 74057602
[14] Li W F et al 2006 J. Phys. G: Nucl. Part. Phys. 32 1143
[15] Gambhir Y K, Ring P and Thimet A 1990 Ann. Phys.(N.Y.) 198 132
[16] Horowitz C J and Serot B D 1981 Nucl. Phys. A 368 503
[17] Long W H et al 2004 Phys. Rev. C 69 034319
[18] Ring P, Gambhir Y K and Lalazissis G A 1997 Comput.Phys. Commun. 105 77
Related articles from Frontiers Journals
[1] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 032103
[2] SONG Chun-Yan, YAO Jiang-Ming, MENG Jie, ** . Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei[J]. Chin. Phys. Lett., 2011, 28(9): 032103
[3] WANG Yan-Zhao, GU Jian-Zhong, **, ZHANG Xi-Zhen, DONG Jian-Min, . Tensor Effect on Bubble Nuclei[J]. Chin. Phys. Lett., 2011, 28(10): 032103
[4] HAN Rui, LI Jia-Xing, YAO Jiang-Ming, JI Juan-Xia, WANG Jian-Song, HU Qiang. Effects of Pairing Correlations on Formation of Proton Halo in 9C[J]. Chin. Phys. Lett., 2010, 27(9): 032103
[5] GAO Yuan, ZHANG Hong-Fei, ZHANG Lei, CHEN Xi-Meng, LI Jun-Qing, GUO Wen-Jun. Relativistic Mean Field Study of the Z=117 Isotopic Chain[J]. Chin. Phys. Lett., 2010, 27(6): 032103
[6] WEN Wu, SHEN Hong. K and K* Exchange Effects in Lambda Hypernuclei[J]. Chin. Phys. Lett., 2010, 27(4): 032103
[7] JIANG Wei-Zhou, CHEN Yun-Peng, LU Xing. De-excitation Energy of Superdeformed Secondary Minima of Odd-Odd Au Isotopes and Its Sensitivity to the Density Dependence of Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(3): 032103
[8] JIANG Wei-Zhou, CHEN Yun-Peng, LU Xing. De-excitation Energy of Superdeformed Secondary Minima of Odd-Odd Au Isotopes and Its Sensitivity to the Density Dependence of Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(3): 032103
[9] CHEN Fang-Qi, ZHOU Xian-Rong, GU Jian-Zhong. Level Statistics for the Nilsson Single-Particle Levels[J]. Chin. Phys. Lett., 2010, 27(3): 032103
[10] ZHONG Ming-Fei, LI Jia-Xing, ZHANG Deng-Gao, HAN Rui, JI Juan-Xia, CHEN Li-Xiang. Clustering Structure of 10Be Studied with the Deformed RMF+BCS Method[J]. Chin. Phys. Lett., 2010, 27(2): 032103
[11] PENG Jing**, YAO Jiang-Ming, ZHANG Shuang-Quan, MENG Jie,. Exotic Magnetic Rotation in 22F[J]. Chin. Phys. Lett., 2010, 27(12): 032103
[12] ZHANG Wei, LIANG Hao-Zhao, ZHANG Shuang-Quan, MENG Jie, . Search for Ring-Like Nuclei under Extreme Conditions[J]. Chin. Phys. Lett., 2010, 27(10): 032103
[13] BAI Chun-Lin, **, ZHANG HUAN-Qiao, ZHANG Xi-Zhen, XU Fu-Rong, H. Sagawa, G. Colò,. Effect of the Tensor Force on Charge-Exchange Spin-Dependent Multipole Excitations[J]. Chin. Phys. Lett., 2010, 27(10): 032103
[14] GUO Yan-Qing, REN Zhong-Zhou,. Exploring Scaling Laws of Valence Neutron Distributions for Medium Nuclei[J]. Chin. Phys. Lett., 2010, 27(10): 032103
[15] HE Chuang-Ye, CUI Xing-Zhu, ZHU Li-Hua, WU Xiao-Guang, LI Guang-Sheng, LIU Ying, WANG Zhi-Min, WEN Shu-Xian, SUN Hui-Bin, MA Rui-Gang, YANG Chun-Xiang. Shell Structures in 91Nb[J]. Chin. Phys. Lett., 2010, 27(10): 032103
Viewed
Full text


Abstract