NUCLEAR PHYSICS |
|
|
|
|
Stability of Strutinsky Shell Correction Energy in Relativistic Mean Field Theory |
NIU Yi-Fei1, LIANG Hao-Zhao1,2, MENG Jie1,3 |
1State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 1008712Institut de Physique Nucléaire, IN2P3-CNRS and Université Paris-Sud, F-91406 Orsay Cedex, France3Department of Physics, University of Stellenbosch, Stellenbosch, South Africa |
|
Cite this article: |
NIU Yi-Fei, LIANG Hao-Zhao, MENG Jie 2009 Chin. Phys. Lett. 26 032103 |
|
|
Abstract The single-particle spectrum obtained from the relativistic mean field (RMF) theory is used to extract the shell correction energy with the Strutinsky method. Considering the delicate balance between the plateau condition in the Strutinsky smoothing procedure and the convergence for the total binding energy, the proper space sizes used in solving the RMF equations are investigated in detail by taking 208Pb as an example. With the proper space sizes, almost the same shell correction energies are obtained by solving the RMF equations either on basis space or in coordinate space.
|
Keywords:
21.10.-k
21.10.Ma
21.10.Pc
21.60.Jz
|
|
Received: 06 October 2008
Published: 19 February 2009
|
|
PACS: |
21.10.-k
|
(Properties of nuclei; nuclear energy levels)
|
|
21.10.Ma
|
(Level density)
|
|
21.10.Pc
|
(Single-particle levels and strength functions)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
|
|
|
[1] Strutinsky V M 1967 Nucl. Phys. A 95 420 [2] Strutinsky V M 1968 Nucl. Phys. A 122 1 [3] Moller P et al 1995 At. Data. Nucl. Data Tables 59 185 [4] Bolsterli M et al 1972 Phys. Rev. C 5 1050 [5] Brack M and Pauli H C 1973 Nucl. Phys. A 207401 [6] Ross C K and Bhaduri R K 1972 Nucl. Phys. A 188 566 [7] Nazarewicz W, Werner T R and Dobaczewski J 1994 Phys. Rev. C 50 2860 [8] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 [9] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [10] Vretenar D et al 2005 Phys. Rep. 409 101 [11] Meng J et al 2006 Prog. Part. Nucl. Phys. 57470 [12] Zhang W et al 2003 Chin. Phys. Lett. 20 1694 [13] Liu Z H and Bao J D 2006 Phys. Rev. C 74057602 [14] Li W F et al 2006 J. Phys. G: Nucl. Part. Phys. 32 1143 [15] Gambhir Y K, Ring P and Thimet A 1990 Ann. Phys.(N.Y.) 198 132 [16] Horowitz C J and Serot B D 1981 Nucl. Phys. A 368 503 [17] Long W H et al 2004 Phys. Rev. C 69 034319 [18] Ring P, Gambhir Y K and Lalazissis G A 1997 Comput.Phys. Commun. 105 77 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|