CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Density-Functional Fidelity Approach to Quantum Phase Transitions |
GU Shi-Jian
|
Department of Physics and ITP, The Chinese University of Hong Kong, Hong Kong |
|
Cite this article: |
GU Shi-Jian 2009 Chin. Phys. Lett. 26 026401 |
|
|
Abstract
We propose a new approach to quantum phase transitions in terms of the density-functional fidelity, which measures the similarity between density distributions of two ground states in parameter space. The key feature of the approach is such that the density-functional fidelity can be measured easily in experiments. Both the validity and versatility of the approach are checked by the Lipkin-Meshkov-Glick model and the one-dimensional Hubbard model.
|
Keywords:
64.60.-i
71.15.Mb
75.10.Jm
71.10.Fd
|
|
Received: 24 September 2008
Published: 20 January 2009
|
|
PACS: |
64.60.-i
|
(General studies of phase transitions)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
|
|
|
[1] Quan H T et al 2006 Phys. Rev. Lett. 96 140604 [2] Zanardi P and Paunkovic N 2006 Phys. Rev. E 74031123 [3] Zhou H Q and Barjaktarevic J P 2008 J. Phys. A Math.Theor. 41 412001 [4] Buonsante P and Vezzani A 2007 Phys. Rev. Lett. 98 110601 [5] You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101 [6] Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev.Lett. 99 100603 [7] Venuti L C and Zanardi P 2007 Phys. Rev. Lett. 99 095701 [8] Gu S J, Kwok H M, Ning W Q and Lin H Q 2008 Phys.Rev. B 77 245109 [9] Chen S, Wang L, Gu S J and Wang Y 2007 Phys. Rev. E 76 061108 Chen S, Wang L, Hao Y and Wang Y 2008 Phys. Rev. A 77 032111 [10] Yang M F 2007 Phys. Rev. B 76 180403 (R) Tzeng Y C and Yang M F 2008 Phys. Rev. A 77012311 [11] Zhou H Q, Orus R and Vidal G 2008 Phys. Rev. Lett. 100 080601 [12] Kwok H M, Ning W Q, Gu S J and Lin H Q 2008 Phys.Rev. E 78 032103 [13] Wang X, Sun Z and Wang Z D arXiv:0803.2940 [14] Zhao J H and Zhou H Q arXiv:0803.0814 [15] Yang S, Gu S J, Sun C P and Lin H Q 2008 Phys. Rev.A 78 012304 [16] Hamma A et al 2008 Phys. Rev. B 77 155111 [17] Abasto D F et al 2008 Phys. Rev. A 78010301(R) [18] Lu X M et al 2008 Phys. Rev. A 78 032309 [19] Venuti L C, Cozzini M, Buonsante P, Massel F, Bray-Ali Nand Zanardi P 2008 Phys. Rev. B 78 115410 [20] Gong L and Tong P 2008 Phys. Rev. B 78 115114 [21] Uhlmann A 1976 Rep. Math. Phys. 9 273 [22] Jozsa R 1994 J. Mod. Opt. 41 2315 [23] Nilesen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University) [24] Sachdev S 2000 Quantum Phase Transitions(Cambridge: Cambridge University) [25] Wen X G 2004 Quantum Field Theory of Many-BodySystems (New York: Oxford University) [26] Kitaev A 2006 Ann. Phys. 321 2 [27] Kitaev A 2003 Ann. Phys. 303 2 [28] White S R 1992 Phys. Rev. Lett. 69 2863 [29] Schollw\"{ock U 2005 Rev. Mod. Phys. 77 259 [30] Hohenberg P and Kohn W 1964 Phys. Rev. 136B864 [31] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [32] Lipkin H J et al 1965 Nucl. Phys. 62 188 [33] Hubbard J 1963 Proc. R. Soc. London A 276 238 [34] Dusuel S and Vidal J 2004 Phys. Rev. Lett. 93237204 [35] Ribeiro P et al 2007 Phys. Rev. Lett. 99050402 [36] Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 201445 [37] Beresinskii V L 1971 Sov. Phys. JETP 32 493 [38] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181 Kosterlitz J M 1974 Sov. Phys. JETP 7 1046 [39] Wu L A et al 2006 Phys. Rev. A 74 052335 [40] Gu S J et al 2004 Phys. Rev. Lett. 93 086402 [41] Larsson D et al 2005 Phys. Rev. Lett. 95196406 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|